《2021-2022学年北师大版八年级数学下册第五章分式与分式方程专项测评试卷(无超纲带解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年北师大版八年级数学下册第五章分式与分式方程专项测评试卷(无超纲带解析).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第五章分式与分式方程专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列等式成立的是()ABCD2、关于x的方程有增根,则m的值是( )A2B1C0D-13、下列说法正确的是
2、( )A若A、B表示两个不同的整式,则一定是分式B如果将分式中的x和y都扩大到原来的3倍,那么分式的值不变C单项式是5次单项式D若,则4、下列变形正确的是()ABCD5、关于的分式方程无解,则( )ABC或D或6、使分式有意义的x取值范围是( )ABCD7、如果把分式中的x和y都扩大3倍,那么分式的值()A扩大到原来的3倍B扩大到原来的9倍C缩小到原来的D缩小到原来的8、下列各分式中,当x1时,分式有意义的是()ABCD9、若分式有意义,则x的取值范围是( )ABCD10、已知分式的值等于0,则x的值为( )A0B1CD1或第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1
3、、若是关于的方程的解,则的值为_2、已知:关于x的方程的两个解为x1a,x2,方程的两个解为x1a,x2,方程的两个解为x1a,x2,则关于x的方程的两个解为_3、从3,1,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程1有整数解,那么这5个数中所有满足条件的a的值之和是_4、若,则的值为_5、=_三、解答题(5小题,每小题10分,共计50分)1、计算:2、冬季来临,某商场预购进一批毛衣用9600元先购进一批毛衣,面市后因供不应求,商场决定又用16800元再次购进这批毛衣,所购数量是第一批购进量的2倍,但单价便宜了10元该商场第一次购进这批毛衣的数
4、量是多少?3、2022年元旦及春节来临之际,我市对城市亮化工程招标,按照甲、乙两个工程队的投标书,甲、乙两队施工一天的工程费分别为1.5万元和1.2万元,根据甲乙两队的投标书测算,应有三种施工方案:甲队单独做这项工程刚好如期完成乙队单独做这项工程,要比规定日期多3天完成若甲、乙两队合作2天后,余下的工程由乙队单独做,也正好如期完成(1)求规定如期完成的天数(2)在确保如期完成的情况下,你认为以上三种方案哪种方案最节省工程款;通过计算说明理由4、先化简,再求值:,其中5、解方程:(1)(2)-参考答案-一、单选题1、C【分析】直接根据分式的性质进行判断即可【详解】解:A. ,故选项A不符合题意;
5、B,故选项B不符合题意;C. ,故选项C符合题意;D. ,故选项D不符合题意;故选C【点睛】本题主要考查了分式性质的应用,熟练掌握分式性质是解答本题的关键2、A【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根有增根,最简公分母x1=0,所以增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值【详解】解:两边都乘(x1),得:m1x0,方程有增根,最简公分母x1=0,即增根是x=1,把x=1代入整式方程,得m=2故选A【点睛】考查了分式方程的增根,解决增根问题的步骤:确定增根的值;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值3、D【分析】根据分式的定义
6、(如果表示两个整式,并且中含有字母,那么式子叫做分式)、分式的基本性质、单项式的次数的定义(一个单项式中,所有字母的指数的和叫做这个单项式的次数)、同底数幂除法的逆用逐项判断即可得【详解】解:A、如果表示两个整式,并且中含有字母,那么式子叫做分式,则此项错误;B、,则此项错误;C、单项式是2次单项式,则此项错误;D、若,则,则此项正确;故选:D【点睛】本题考查了分式与分式的基本性质、单项式的次数、同底数幂除法的逆用,掌握理解各定义和性质是解题关键4、B【分析】分式的基本性质:分式的分子与分母都乘以或除以同一个不为0的数(或整式),分式的值不变,利用分式的基本性质逐一分析判断即可.【详解】解:不
7、一定相等,变形不符合分式的基本性质,变形错误,故A不符合题意;,变形符合分式的基本性质,故B符合题意;不一定相等,变形不符合分式的基本性质,变形错误,故C不符合题意;不一定相等,变形不符合分式的基本性质,变形错误,故D不符合题意;故选B【点睛】本题考查的是分式的基本性质,掌握“利用分式的基本性质判断分式变形是否正确”是解本题的关键.5、C【分析】先解分式方程得,再由方程无解可得或或,分别求出的值即可【详解】解:,方程两边同时乘得:,移项得:,合并同类项得:,方程无解,或或,当时,解得:,或,故选:C【点睛】本题考查分式方程的解,熟练掌握分式方程无解的条件是解题的关键6、C【分析】令分母x+10
8、,求解即可【详解】分式有意义,x+10,即,故选C【点睛】本题考查了分式有意义的条件,让分母不等于零转化为不等式求解是解题的关键7、A【分析】x和y都扩大到原来的3倍就是分别变成原来的3倍,变成3x和3y用3x和3y代替式子中的x和y,根据得到的式子与原来的式子的关系进行判断即可【详解】解:用3x和3y代替式子中的x和y得:分式的值扩大到原来的3倍,故选A【点睛】本题考查分式的基本性质,解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论8、A【分析】根据分式有意义的条件:分母不为零,进行逐一判断即可【详解】解:A、当x1时,分母2
9、x+110,所以分式有意义;故本选项符合题意;B、当x1时,分母x+10,所以分式无意义;故本选项不符合题意;C、当x1时,分母x210,所以分式无意义;故本选项不符合题意;D、当x1时,分母x2+x0,所以分式无意义;故本选项不符合题意;故选A【点睛】本题主要考查了分式有意义的条件,熟知分式有意义的条件是解题的关键9、D【分析】根据分式有意义的条件是分母不为0列不等式求解【详解】解:分式有意义,解得:,故选D【点睛】本题主要考查了分式有意义的条件,熟知分式有意义的条件是解题的关键10、B【分析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得【详解】解:分式的值为零,解得:x=1,
10、故选B【点睛】本题主要考查了分式值为0的条件,熟知分式值为0的条件是解题的关键二、填空题1、【分析】把代入方程,得到关于的一元一次方程,再解方程即可.【详解】解: 是关于的方程的解, 解得: 故答案为:【点睛】本题考查的是分式方程的解,掌握“把分式方程的解代入原方程求解未知系数的值”是解本题的关键.2、x1a,x2【分析】根据关于x的方程的两个解为x1a,x2,方程的两个解为x1a,x2,方程的两个解为x1a,x2,得到规律求解即可【详解】解:关于x的方程的两个解为x1a,x2,方程的两个解为x1a,x2,方程的两个解为x1a,x2,依规律,得x1a1或x1,解得:x1a,x2故答案为:x1a
11、,x2【点睛】本题主要考查了与分式有关的规律型问题,解题的关键在于根据题意找到规律并且构造3、【分析】不等式组中两不等式整理后,由不等式组无解确定出a的范围,进而舍去a不合题意的值,分式方程去分母转化为整式方程,表示出整数方程的解,由分式方程有整数解,确定出满足题意a的值,求出之和即可【详解】解:解不等式得:,解不等式得:不等式组的解集为,由不等式组无解,得到a1,即a3,1,1,分式方程去分母得:x+a23x,解得:x,由分式方程的解为整数,得到a-3,1,所有满足条件的a的值之和是-3+1=-2,故答案为:-2【点睛】本题主要考查了解一元一次不等式组和解分式方程,解题的关键在于能够熟练掌握
12、相关知识进行求解4、【分析】由题意根据分式的基本性质对分式进行化简,进而代入计算即可得出答案.【详解】解:,可得,所以.故答案为:.【点睛】本题考查分式的化简求值,熟练掌握并利用分式的基本性质对分式进行化简以及倒数的性质是解题的关键.5、-b2【分析】根据分式的除法计算法则求解即可【详解】解:,故答案为:【点睛】本题主要考查了分式的除法,熟知相关计算法则是解题的关键三、解答题1、a+1【分析】根据分式的除法法则和减法,先计算除法、后计算减法即可.【详解】解: =a+1【点睛】本题考查了分式的混合运算,把分式因式分解化为最简再计算是解题关键2、该商场第一次购进这批毛衣的数量是120件【分析】设该
13、商场第一次购进这批毛衣的数量是x件,根据题中第二次单价比第一次单价便宜10元列出分式方程求解即可【详解】解:设该商场第一次购进这批毛衣的数量是x件,则第二次购进这批毛衣的数量是2x件,根据题意,得:,解得:x=120,经检验,x=120是所列方程的解,答:该商场第一次购进这批毛衣的数量是120件【点睛】本题考查分式方程的应用,理解题意,正确列出分式方程是解得的关键3、(1)按规定用6天如期完成;(2)方案最节省工程款且不误期【分析】(1)设工程期为x 天,则甲队单独完成用x 天,乙队单独完成用(x+3 )天,由“若甲、乙两队合作2天后,余下的工程由乙队单独做,也正好如期完成”列出方程并解答(2
14、)方案、不耽误工期,符合要求,可以求费用,方案显然不符合要求【详解】(1)解:设工程期为x 天,则甲队单独完成用x 天,乙队单独完成用(x+3)天解得x6,经检验:x6是原方程的解,且适合题意,答:按规定用6天如期完成;(2)在不耽误工期的情况下,有方案和方案两种方案合乎要求,但方案需工程款1.569 (万元),方案需工程款1.52+1.2610.2(万元),因为10.29,故方案最节省工程款且不误期【点睛】此题主要考查了分式方程的应用,找到合适的等量关系是解决问题的关键在既有工程任务,又有工程费用的情况下先考虑完成工程任务,再考虑工程费用4、,6【分析】先计算括号内的分式加法,再计算分式的除法,然后将代入计算即可得【详解】解:原式,将代入得:原式【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题关键5、(1);(2)无解【分析】(1)分式方程两边乘以,去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解(2)分式方程两边乘以去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解【详解】(1),解:,检验:当时,所以,原方程的解是,(2),解:,检验:当时,所以,不是原方程的解【点睛】本题考查了解分式方程,解题的关键是利用“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根