《青海省2023年教师资格之中学数学学科知识与教学能力每日一练试卷A卷含答案.doc》由会员分享,可在线阅读,更多相关《青海省2023年教师资格之中学数学学科知识与教学能力每日一练试卷A卷含答案.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、青海省青海省 20232023 年教师资格之中学数学学科知识与教学年教师资格之中学数学学科知识与教学能力每日一练试卷能力每日一练试卷 A A 卷含答案卷含答案单选题(共单选题(共 5050 题)题)1、患者,男,51 岁。尿频、尿痛间断发作 2 年,下腹隐痛、肛门坠胀 1 年。查体:肛门指诊双侧前列腺明显增大、压痛、质偏硬,中央沟变浅,肛门括约肌无松弛。前列腺液生化检查锌含量为 1.76mmol/L,B 超显示前列腺增大。选择前列腺癌的肿瘤标志A.PSAB.CEAC.SCCD.CA125E.CA19-9【答案】A2、下列关于椭圆的叙述:平面内到两个定点的距离之和等于常数的动点轨迹是椭圆;平面内
2、到定直线和直线外的定点距离之比为大于 1 的常数的动点轨迹是椭圆;从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆的另一个焦点;平面与圆柱面的截面是椭圆。正确的个数是()A.0B.1C.2D.3【答案】C3、可由分子模拟而导致自身免疫性疾病的病原体有()A.金黄色葡萄球菌B.伤寒杆菌C.溶血性链球菌D.大肠杆菌E.痢疾杆菌【答案】C4、实验室常用的校准品属于A.一级标准品B.二级标准品C.三级标准品D.四级标准品E.五级标准品【答案】C5、珠蛋白生成障碍性贫血的主要诊断依据是A.粒红比缩小或倒置B.血红蛋白尿C.外周血出现有核红细胞D.血红蛋白电泳异常E.骨髓中幼稚红细胞明显增高【答案】D6、
3、设 f(x)=acosx+bsinx 是 R 到 R 的函数,V=f(x)|f(x)=acosx+bsinx,a,bR是线性空间,则 V 的维数是()。A.1B.2C.3D.【答案】B7、有限小数与无限不循环小数的关系是()。A.对立关系B.从属关系C.交叉关系D.矛盾关系【答案】A8、下面是关于学生数学学习评价的认识:A.B.C.D.【答案】D9、Grave 病的自身抗原是A.甲状腺球蛋白B.乙酰胆碱受体C.红细胞D.甲状腺细胞表面 TSH 受体E.肾上腺皮质细胞【答案】D10、逻辑推理是得到数学结论、构建数学体系的重要方式,是数学严谨性的()。A.标准B.认知规律C.基本保证D.内涵【答案
4、】C11、义务教育课程的总目标是从()方面进行阐述的。A.认识,理解,掌握和解决问题B.基础知识,基础技能,问题解决和情感C.知识,技能,问题解决,情感态度价值观D.知识与技能,数学思考,问题解决和情感态度【答案】D12、设函数 f(x)满足 f”(x)-5f(x)+6f(x)=0,若 f(x0)0,f(x0)=0,则()。A.f(x)在点 x0 处取得极大值B.f(x)在点 x0 的某个领域内单调增加C.f(x)在点 x0 处取得极小值D.f(x)在点 x0 的某个领域内单调减少【答案】A13、某中学高一年级 560 人,高二年级 540 人,高三年级 520 人,用分层抽样的方法抽取容量为
5、 81 的样本,则在高一、高二、高三三个年级抽取的人数分别是()A.28、27、26B.28、26、24C.26、27、28D.27、26、25【答案】A14、贫血伴轻、中度黄疸,肝功能试验均正常,最可能的诊断为是A.晚期肝硬化B.脾功能亢进C.溶血性贫血D.ITPE.急性白血病【答案】C15、5-HT 存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】B16、关于心肌梗死,下列说法错误的是A.是一种常见的动脉血栓性栓塞性疾病B.血管内皮细胞损伤的检验指标增高C.生化酶学和血栓止血检测是诊断的金指标D.较有价值的观察指标是分子标志物检测E.血小板黏附和聚集功能增强【答案】C17、
6、普通高中数学课程标准(2017 年版)指出高中数学课程分为哪几种课程?()A.必修课程、选修课程B.必修课程、选择性必修课程、选修课程C.选修课程、选择性必修课程D.必修课程、选择性必修课程【答案】B18、男性,10 岁,发热 1 周,并有咽喉痛,最近两天皮肤有皮疹。体检:颈部及腋下浅表淋巴结肿大,肝肋下未及,脾肋下 1cm。入院时血常规结果为:血红蛋白量 113gL:白细胞数 810A.涂抹细胞B.异型淋巴细胞C.淋巴瘤细胞D.原始及幼稚淋巴细胞E.异常组织细胞【答案】B19、即刻非特异性免疫应答发生在感染后()A.感染后 04 小时内B.感染后 496 小时内C.感染后 2448 小时内D
7、.感染后 96 小时内E.感染后 45 天【答案】A20、与意大利传教士利玛窦共同翻译了几何原本(I卷)的我国数学家是()。A.徐光启B.刘徽C.祖冲之D.杨辉【答案】A21、弥散性血管内凝血常发生于下列疾病,其中哪项不正确A.败血症B.肌肉血肿C.大面积烧伤D.重症肝炎E.羊水栓塞【答案】B22、下列关于椭圆的论述,正确的是()。A.平面内到两个定点的距离之和等于常数的动点轨迹是椭圆B.平面内到定点和定直线距离之比小于 1 的动点轨迹是椭圆C.从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆另一个焦点D.平面与圆柱面的截线是椭圆【答案】C23、下列描述为演绎推理的是()。A.从-般到特殊的推
8、理B.从特殊到-般的推理C.通过实验验证结论的推理D.通过观察猜想得到结论的推理【答案】A24、内、外源性凝血系统形成凝血活酶时,都需要的因子是A.因子B.因子C.因子D.因子E.因子【答案】D25、在下列描述课程目标的行为动词中,要求最高的是()。A.理解B.了解C.掌握D.知道【答案】C26、增生性贫血时不出现的是()A.血片中可见形态、染色、大小异常的红细胞B.外周血红细胞、血红蛋白减低C.血片中原粒细胞5%D.外周血网织红细胞5%E.血片中可出现幼红细胞,多染性或嗜碱性细胞【答案】C27、下列数学成就是中国著名数学成就的是()。A.B.C.D.【答案】C28、九章算数注的作者是()。A
9、.刘徽B.秦九韶C.杨辉D.赵爽【答案】A29、设 f(x)=acosx+bsinx 是 R 到 R 的函数,V=f(x)|f(x)=acosx+bsinx,a,bR是线性空间,则 V 的维数是()。A.1B.2C.3D.【答案】B30、患者,男,28 岁,患尿毒症晚期,拟接受肾移植手术。移植器官的最适供者是A.父母双亲B.同卵双生兄弟C.同胞姐妹D.同胞兄弟E.无关个体【答案】B31、提出“一笔画定理”的数学家是()。A.高斯B.牛顿C.欧拉D.莱布尼兹【答案】C32、特种蛋白免疫分析仪是基于抗原-抗体反应原理,不溶性免疫复合物可使溶液浊度改变,再通过浊度检测标本中微量物质的分析方法。特种蛋
10、白免疫分析仪根据监测角度的不同分为A.免疫透射和散射浊度分析B.免疫散射浊度分析C.免疫透射浊度分析D.免疫乳胶浊度分析E.速率和终点散射浊度测定【答案】A33、血管损伤后伤口的缩小和愈合有赖于血小板的哪项功能A.黏附B.聚集C.收缩D.促凝E.释放【答案】C34、5-HT 存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】B35、儿茶酚胺是A.激活血小板物质B.舒血管物质C.调节血液凝固物质D.缩血管物质E.既有舒血管又能缩血管的物质【答案】D36、解二元一次方程组用到的数学方法主要是()。A.降次B.放缩C.消元D.归纳【答案】C37、女性,20 岁,头昏、乏力半年,近 2
11、年来每次月经持续 78d,有血块。门诊检验:红细胞 3.010A.缺铁性贫血B.溶血性贫血C.营养性巨幼细胞贫血D.再生障碍性贫血E.珠蛋白生成障碍性贫血【答案】A38、外周血三系减少,而骨髓增生明显活跃,下列哪一项与此不符()A.巨幼红细胞性贫血B.再障C.颗粒增多的早幼粒细胞白血病D.阵发性睡眠性蛋白尿E.以上都符合【答案】B39、ATP 存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】A40、动物免疫中最常用的佐剂是A.卡介苗B.明矾C.弗氏佐剂D.脂多糖E.吐温-20【答案】C41、性连锁高 IgM 综合征是由于()A.T 细胞缺陷B.B 细胞免疫功能缺陷C.体液免疫功
12、能低下D.活化 T 细胞 CD40L 突变E.白细胞黏附缺陷【答案】D42、型超敏反应根据发病机制,又可称为A.免疫复合物型超敏反应B.细胞毒型超敏反应C.迟发型超敏反应D.速发型超敏反应E.型超敏反应【答案】A43、欲了解 M 蛋白的类型应做A.血清蛋白区带电泳B.免疫电泳C.免疫固定电泳D.免疫球蛋白的定量测定E.尿本周蛋白检测【答案】B44、在集合、三角函数、导数及其应用、平面向量和空间向量五个内容中,属于高中数学必修课程内容的有()A.1 个B.2 个C.3 个D.4 个【答案】C45、维生素 K 缺乏和肝病导致凝血障碍,体内因子减少的是A.、B.、C.、D.、E.、【答案】A46、男
13、性,35 岁,贫血已半年,经各种抗贫血药物治疗无效。肝肋下 2cm,脾肋下 1cm,浅表淋巴结未及。血象:RBC23010A.慢性再生障碍性贫血B.巨幼细胞性贫血C.骨髓增生异常综合征D.缺铁性贫血E.急性粒细胞白血病【答案】C47、设?(x)为a,b上的连续函数,则下列命题不正确的是()(常考)A.?(x)在a,b上有最大值B.?(x)在a,b上一致连续C.?(x)在a,b上可积D.?(x)在a,b上可导【答案】D48、B 细胞识别抗原的受体是A.Fc 受体B.TCRC.SmIgD.小鼠红细胞受体E.C3b 受体【答案】C49、外周免疫器官包括A.脾脏、淋巴结、其他淋巴组织B.扁桃腺、骨髓、
14、淋巴结C.淋巴结、骨髓、脾脏D.胸腺、脾脏、粘膜、淋巴组织E.腔上囊、脾脏、扁桃体【答案】A50、适应性免疫应答A.具有特异性B.时相是在感染后数分钟至 96hC.吞噬细胞是主要效应细胞D.可遗传E.先天获得【答案】A大题(共大题(共 1010 题)题)一、案例:面对课堂上出现的各种各样的意外生成,教师如何正确应对,如何让这些生成为我们高效的课堂教学服务如何把自己课前的预设和课堂上的生成有效融合,从而实现教学效果的最大化这是教师时刻面临的问题。在一次听课中有下面的一个教学片段:教师在介绍完中住线的概念后,布置了一个操作探究活动。师:大家把手中的三角形纸片沿其一条中位线剪开,并用剪得的纸片拼出一
15、个四边形,由这个活动你可以得到哪些和中位线有关的结论学生正准备动手操作,一名学生举起了手。生:我不剪彩纸也知道结论。师:你知道什么结论生:三角形的中位线平行于第三边并等于第三边的一半。教师没有想到会出现这么个“程咬金”,脸冷了下来:“你怎么知道的”生:我昨天预习了,书上这么说的。师:就你聪明。坐下!后面的教学是在沉闷的气氛中进行的学生操作完成后再也不敢举手发言了。问题:(1)结合上面这位教师的教学过程,简要做出评析;(10 分)(2)结合你的教学经历,说明如何处理好课堂上的意外生成。(10 分)【答案】(1)在课堂上,教师面对的是一群有着不同生活经历、有自己的想法。在很多方面存在差异的生命体,
16、也正是因为有这种差异,课堂才是充满变化、丰富多彩的,教师如果不能适应这种变化,不能及时正确处理课堂的生成,那么其课堂效果将很难保证是高效的。在上面的教学片段中教师对学生直接说出中位线的性质很是不满,因为这样一来教师后面设计好的精彩探索活动就没有必要再进行了。碰上这样的意外,教师采取了生硬的处理方式。让其他学生继续探索,但此时教师的不满情绪和处理这件事情的方式使得全班同学失去了探索的兴趣和发言的勇气。教师如果换一种方式,先表扬发言学生“你真是个爱学习的学生,我相信你还是个爱思考的学生!”然后让他和大家一道动手操作、探索、验证中位线为什么会具有这样的性质,课堂效果应该更好。(2)生成从性质角度来说
17、,有积极的一面,也有消极的一面,从效果角度来说有有效的一面,也有无效的一面。教师在课堂上要充分发挥好自己组织者的角色,不断地捕捉、判断、重组课堂教学中从学生那里涌现出来的各种各种各类信息,并能快速断定哪些生成对教学是有效的,哪些生成是偏离了教学目标,一名优秀的数学教师应该能够正确应对课堂上出现的各种各样生成,使之为我们的数学教学服务,提高课堂教学的效果。二、数据分析素养是课标要求培养的数学核心素养之一。(1)请说明数据分析的内涵,并简述数据分析的基本过程;(2)请在具体教学实践上说明如何培养学生的数据分析素养。【答案】三、下列是三位教师对“等比数列概念”引入的教学片段。【教师甲】用实例引入,选
18、了一个增长率的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,8,16,1,-1,1,-1,1,-4,2,-1,1,1,l,1,1,由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等
19、差数列?你能类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。【答案】四、在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1 弧度的角”的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫作 1 弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。问题:(1)谈谈“弧度制”在高中数学课程中的作用;(8 分)(2)确定“弧度制”的教学目标和教
20、学重难点;(10 分)(3)根据教材,设计一个“弧度制概念”引入的教学片段,引导学生经历从实际背景抽象概念的过程。(12 分)【答案】五、下面是某位老师引入“负数”概念的教学片段。师:我们当地 7 月份的平均气温是零上 28,l 月份的平均气温是零下 3,问 7 月份的平均气温比 1月份的平均气温高几度如何列式计算生:用零上 28减去零下 3,得到的答案是 31。师:答案没错,算式呢生:文字与数字混在一起,一点也不美观。生:零上 28,我们常说成 28,可用 28 表示,但是零下 3不能说成 3呀!也就不能用 3 表示。师:大家的发言很有道理,如何解决这一系列的矛盾呢看样子有必要引入一个新数来
21、表示零下 3c。这时,零下 3就可写成-3,-3就是负数。问题:(1)对该教师情境创设的合理性作出解释;(2)在引入数学概念时,结合上述案例,说说教师创设情境要考虑哪些因素【答案】(1)在这段教学中,教师没有将负数的概念强压给学生,而是设计了计算温度这个情境,让学生自己参与计算活动,发现其中的困惑,从而产生学习新数学概念的意愿。教师只是从中提炼出学生的想法,并进一步上升为数学知识负数。这样,负数概念的提出,成为了学生的自觉行为。学生对负数概念的引入有了较深的思想基础,就会认识到学习负数的必要性,为学好负数奠定了基础。(2)引入数学概念是教学的开始,学生能否掌握好这个概念,与教师引入的艺术是密切
22、联系的。因此,在引人数学概念时,要考虑下面的因素。学习的必要性。引入新概念时,教师应创设一个引入概念的情境,让学生在情境中领会概念产生的必要性。内容的实质性。引入数学概念时,教师所选用的实例要反映概念的本质,不要让太多的无关因素干扰了学生学习的注意力,影响数学概念的形成。数量的适量性。在引入概念时,教师一般要举出一些例子,以便加深学生对概念的初步认识。实例的趣味性。教师在选用例子进行概念教学时,要注意例子的生动有趣,要能引发学生的学习兴趣。教师要尽量结合学生的生活实际或者选择学生非常熟悉与非常感兴趣的问题作为例子。六、案例:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群里,要数腿共 48
23、,要数脑袋整 l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为 17 只,总的腿数应为 34 条,但现在有 48 条腿,造成腿的数目不够是由于小兔的数目是 O,每有一只小兔便会增加两条腿,敌应有(48172)2=7 只小兔。相应地,小鸡有 10 只。解法二:用代数方法:可设有 x 只小鸡,y 只小兔,则 x+y=17;2x+4y=48。将第一个方程的两边同乘以-2 加到第二个方程中去,得 x+y=17;(4-2)y=48-17x2。解上述第二个方程得 y=7,把 y=7 代入第一个方程得 x=10。所以有 10 只小鸡7 只小兔。问题:(1)试说明这两种解法所体现的算法思
24、想;(10 分)(2)试说明这两种算法的共同点。(10 分)【答案】(1)解法一所体现的算法是:S1 假设没有小兔则小鸡应为 n 只;S2计算总腿数为 2n 只;S3 计算实际总腿数 m 与假设总腿数 2n 的差值 m-2n;S4计算小兔只数为(m-2n)2;S5 小鸡的只数为 n-(m-2n)2;解法二所体现的算法是:S1 设未知数 S2 根据题意列方程组;S3 解方程组:S4 还原实际问题,得到实际问题的答案。(2)不论在哪一种算法中,它们都是经有限次步骤完成的,因而它们体现了算法的有穷性。在算法中,第一步都能明确地执行,且有确定的结果,因此具有确定性。在所有算法中,每一步操作都是可以执行
25、的,也就是具有可行性。算法解决的都是一类问题,因此具有普适性。七、案例:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群里,要数腿共 48,要数脑袋整 l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为 17 只,总的腿数应为 34 条,但现在有 48 条腿,造成腿的数目不够是由于小兔的数目是 O,每有一只小兔便会增加两条腿,敌应有(48172)2=7 只小兔。相应地,小鸡有 10 只。解法二:用代数方法:可设有 x 只小鸡,y 只小兔,则 x+y=17;2x+4y=48。将第一个方程的两边同乘以-2 加到第二个方程中去,得 x+y=17;(4-2)y=48-17x2。
26、解上述第二个方程得 y=7,把 y=7 代入第一个方程得 x=10。所以有 10 只小鸡7 只小兔。问题:(1)试说明这两种解法所体现的算法思想;(10 分)(2)试说明这两种算法的共同点。(10 分)【答案】(1)解法一所体现的算法是:S1 假设没有小兔则小鸡应为 n 只;S2计算总腿数为 2n 只;S3 计算实际总腿数 m 与假设总腿数 2n 的差值 m-2n;S4计算小兔只数为(m-2n)2;S5 小鸡的只数为 n-(m-2n)2;解法二所体现的算法是:S1 设未知数 S2 根据题意列方程组;S3 解方程组:S4 还原实际问题,得到实际问题的答案。(2)不论在哪一种算法中,它们都是经有限
27、次步骤完成的,因而它们体现了算法的有穷性。在算法中,第一步都能明确地执行,且有确定的结果,因此具有确定性。在所有算法中,每一步操作都是可以执行的,也就是具有可行性。算法解决的都是一类问题,因此具有普适性。八、义务教育数学课程标准(2011 年版)附录中给出了两个例子:例 1.计算 1515,2525,9595,并探索规律。例2.证明例 1 所发现的规律。很明显例 1 计算所得到的乘积是一个三位数或者四位数,其中后两位数为 25,而百位和千位上的数字存在这样的规律:12=2,23=6,34=12,这是“发现问题”的过程,在“发现问题”的基础上,需要尝试用语言符号表达规律,实现“提出问题”,进一步
28、实现“分析问题”和“解决问题”。请根据上述内容,完成下列任务:(1)分别设计例 1、例 2的教学目标;(8 分)(2)设计“提出问题”的主要教学过程;(8 分)(3)设计“分析问题”和“解决问题”的主要教学过程;(7 分)(4)设计“推广例 1 所探究的规律”的主要教学过程。(7 分)【答案】本题主要考查考生对于新授课教学设计的能力。九、在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1 弧度的角”的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫作 1 弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在
29、生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。问题:(1)谈谈“弧度制”在高中数学课程中的作用;(8 分)(2)确定“弧度制”的教学目标和教学重难点;(10 分)(3)根据教材,设计一个“弧度制概念”引入的教学片段,引导学生经历从实际背景抽象概念的过程。(12 分)【答案】一十、严谨性与量力性相结合”是数学教学的基本原则。(1)简述“严谨性与量力性相结合”教学原则的内涵(3 分);(2)初中数学教学中“负负得正”运算法则引入的方式有哪些?请写出至少两种(6 分);(3)在初中“负负得正”运算法则的教学中,如何体现“严谨性与量力性相结合”的教学原则?(6分)【答案】本题主要
30、考查严谨性与量力性的教学原则,以及课堂导入技巧的教学技能知识。(1)“严谨性与量力性相结合”教学原则的内涵是指数学逻辑的严密性及结论的精确性,在中学的数学理论中也不例外。所谓数学的严谨性,就是指对数学内容结论的叙述必须精确,结论的论证必须严格、周密,整个数学内容被组织成一个严谨的逻辑系统。教材有时对有些内容避而不谈,或用直观说明,或用不完全归纳法验证,或不必说明的作了说明,或扩大公理体系等,这些做法主要是考虑到学生的可接受性,估计降低内容的严谨性,让学生更好地掌握要学的数学内容。当前数学界提出的“淡化形式,注重实质”的口号实质上也是侧面反映出数学必须坚持严谨性与量力性相结合原则的问题。(2)初中数学教学中“负负得正”运算法则引入的方式可以从生活中的负数入手,举出两个引入的方式即可。(3)在初中“负负得正”运算法则的教学中,可以根据学生的认知水平和学生接受的难易程度入手,设法安排学生逐步适应的过程与机会,然后再利用一些数学模型解析“负负得正”运算法则,从而体现“严谨性与量力性相结合”的教学原则。