《新《考研资料》考研数学历年真题(1998-2007)年数学一.doc》由会员分享,可在线阅读,更多相关《新《考研资料》考研数学历年真题(1998-2007)年数学一.doc(40页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2007年全国硕士研究生入学统一考试数学(一)试卷一、选择题(本题共10小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号内)(1)当时,与等价的无穷小量是( )(A)(B) (C)(D)(2)曲线,渐近线的条数为( )(A)0 (B)1 (C)2 (D)3(3)如图,连续函数在区间上的图形分别是直径为1的上、下半圆周,在区间的图形分别是直径为2的上、下半圆周,设.则下列结论正确的是( )(A)(B) (C)(D)(4)设函数在处连续,下列命题错误的是( )(A)若存在,则 (B)若 存在,则 (C)若 存在,则 (D)若 存在,则(5)设
2、函数在(0, +)上具有二阶导数,且, 令则下列结论正确的是( )(A)若,则必收敛 (B)若,则必发散 (C)若,则必收敛 (D)若,则必发散(6)设曲线(具有一阶连续偏导数),过第2象限内的点和第象限内的点为上从点到的一段弧,则下列小于零的是( )(A)(B)(C)(D)(7)设向量组线性无关,则下列向量组线形相关的是( )(A) (B)(C) (D)(8)设矩阵,则与( )(A)合同,且相似(B)合同,但不相似(C)不合同,但相似(D)既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为( )(A)(B)(C)(D)(1
3、0)设随即变量服从二维正态分布,且与不相关,分别表示的概率密度,则在的条件下,的条件概率密度为( )(A) (B)(C)(D)二、填空题(1116小题,每小题4分,共24分,请将答案写在答题纸指定位置上)(11)=_.(12)设为二元可微函数,则=_.(13)二阶常系数非齐次线性方程的通解为=_.(14)设曲面,则=_.(15)设矩阵,则的秩为_.(16)在区间中随机地取两个数,则这两个数之差的绝对值小于的概率为_.三、解答题(1724小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤)(17)(本题满分11分)求函数 在区域上的最大值和最小值.(18)(本
4、题满分10分)计算曲面积分其中 为曲面的上侧.(19)(本题满分11分)设函数在上连续,在内具有二阶导数且存在相等的最大值,证明:存在,使得 .(20)(本题满分10分)设幂级数 在内收敛,其和函数满足 (1)证明:(2)求的表达式.(21)(本题满分11分) 设线性方程组与方程 有公共解,求的值及所有公共解. (22)(本题满分11分)设3阶实对称矩阵的特征向量值是的属于特征值的一个特征向量,记其中为3阶单位矩阵.(1)验证是矩阵的特征向量,并求的全部特征值与特征向量.(2)求矩阵.(23)(本题满分11分)设二维随机变量的概率密度为(1)求 (2)求的概率密度.(24)(本题满分11分)设
5、总体的概率密度为是来自总体的简单随机样本,是样本均值(1)求参数的矩估计量.(2)判断是否为的无偏估计量,并说明理由.2006年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1).(2)微分方程的通解是 .(3)设是锥面()的下侧,则 .(4)点到平面的距离= .(5)设矩阵,为2阶单位矩阵,矩阵满足,则= .(6)设随机变量与相互独立,且均服从区间上的均匀分布,则= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求)(7)设函数具有二阶导数,且,为自变量在处的增量,与分别为在
6、点处对应的增量与微分,若,则( )(A)(B)(C)(D)(8)设为连续函数,则等于( )(A)(B)(C)(D)(9)若级数收敛,则级数( )(A)收敛(B)收敛(C)收敛(D)收敛 (10)设与均为可微函数,且.已知是在约束条件下的一个极值点,下列选项正确的是( )(A)若,则(B)若,则(C)若,则(D)若,则(11)设均为维列向量,是矩阵,下列选项正确的是( )(A)若线性相关,则线性相关(B)若线性相关,则线性无关(C)若线性无关,则线性相关(D)若线性无关,则线性无关.(12)设为3阶矩阵,将的第2行加到第1行得,再将的第1列的-1倍加到第2列得,记,则( )(A)(B)(C)(D
7、)(13)设为随机事件,且,则必有( )(A)(B)(C)(D)(14)设随机变量服从正态分布,服从正态分布,且则( )(A) (B)(C)(D)三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分10分)设区域D=,计算二重积分.(16)(本题满分12分)设数列满足.求:(1)证明存在,并求之. (2)计算.(17)(本题满分12分)将函数展开成的幂级数.(18)(本题满分12分)设函数满足等式.(1)验证.(2)若求函数的表达式.(19)(本题满分12分)设在上半平面内,数是有连续偏导数,且对任意的都有.证明: 对内的任意分段光滑的有向简单闭曲线
8、,都有.(20)(本题满分9分)已知非齐次线性方程组有3个线性无关的解,(1)证明方程组系数矩阵的秩.(2)求的值及方程组的通解.(21)(本题满分9分)设3阶实对称矩阵的各行元素之和均为3,向量是线性方程组的两个解.(1)求的特征值与特征向量.(2)求正交矩阵和对角矩阵,使得.(22)(本题满分9分)随机变量的概率密度为为二维随机变量的分布函数.(1)求的概率密度.(2).(23)(本题满分9分) 设总体的概率密度为 ,其中是未知参数,为来自总体的简单随机样本,记为样本值中小于1的个数,求的最大似然估计2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满
9、分24分.把答案填在题中横线上)(1)曲线的斜渐近线方程为 _.(2)微分方程满足的解为_.(3)设函数,单位向量,则=._.(4)设是由锥面与半球面围成的空间区域,是的整个边界的外侧,则_.(5)设均为3维列向量,记矩阵,如果,那么 .(6)从数1,2,3,4中任取一个数,记为, 再从中任取一个数,记为, 则=_.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求)(7)设函数,则在内( )(A)处处可导 (B)恰有一个不可导点(C)恰有两个不可导点 (D)至少有三个不可导点(8)设是连续函数的一个原函数,表示的充分必要条件是则必有( )(A)是偶
10、函数是奇函数 (B)是奇函数是偶函数(C)是周期函数是周期函数 (D)是单调函数是单调函数(9)设函数, 其中函数具有二阶导数, 具有一阶导数,则必有( )(A)(B)(C)(D)(10)设有三元方程,根据隐函数存在定理,存在点的一个邻域,在此邻域内该方程( )(A)只能确定一个具有连续偏导数的隐函数 (B)可确定两个具有连续偏导数的隐函数和 (C)可确定两个具有连续偏导数的隐函数和 (D)可确定两个具有连续偏导数的隐函数和(11)设是矩阵的两个不同的特征值,对应的特征向量分别为,则,线性无关的充分必要条件是( )(A)(B) (C) (D)(12)设为阶可逆矩阵,交换的第1行与第2行得矩阵分
11、别为的伴随矩阵,则( )(A)交换的第1列与第2列得 (B)交换的第1行与第2行得 (C)交换的第1列与第2列得 (D)交换的第1行与第2行得 (13)设二维随机变量的概率分布为X Y0100.410.1已知随机事件与相互独立,则( )(A) (B)(C)(D)(14)设为来自总体的简单随机样本,为样本均值,为样本方差,则( )(A) (B)(C) (D)三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分11分)设,表示不超过的最大整数. 计算二重积分(16)(本题满分12分)求幂级数的收敛区间与和函数.(17)(本题满分11分)如图,曲线的方程
12、为,点是它的一个拐点,直线与分别是曲线在点与处的切线,其交点为.设函数具有三阶连续导数,计算定积分(18)(本题满分12分)已知函数在上连续,在内可导,且. 证明:(1)存在 使得.(2)存在两个不同的点,使得(19)(本题满分12分)设函数具有连续导数,在围绕原点的任意分段光滑简单闭曲线上,曲线积分的值恒为同一常数.(1)证明:对右半平面内的任意分段光滑简单闭曲线有.(2)求函数的表达式.(20)(本题满分9分)已知二次型的秩为2.(1)求的值;(2)求正交变换,把化成标准形.(3)求方程=0的解.(21)(本题满分9分)已知3阶矩阵的第一行是不全为零,矩阵(为常数),且,求线性方程组的通解
13、.(22)(本题满分9分)设二维随机变量的概率密度为 求:(1)的边缘概率密度.(2)的概率密度(23)(本题满分9分)设为来自总体的简单随机样本,为样本均值,记求:(1)的方差.(2)与的协方差2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线上与直线垂直的切线方程为_ .(2)已知,且,则=_ .(3)设为正向圆周在第一象限中的部分,则曲线积分的值为_.(4)欧拉方程的通解为_ .(5)设矩阵,矩阵满足,其中为的伴随矩阵,是单位矩阵,则=_ .(6)设随机变量服从参数为的指数分布,则= _ .二、选择题(本题
14、共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求)(7)把时的无穷小量,使排在后面的是前一个的高阶无穷小,则正确的排列次序是( )(A) (B)(C) (D)(8)设函数连续,且则存在,使得( )(A)在(0,内单调增加 (B)在内单调减少(C)对任意的有 (D)对任意的有 (9)设为正项级数,下列结论中正确的是( )(A)若=0,则级数收敛(B)若存在非零常数,使得,则级数发散(C)若级数收敛,则 (D)若级数发散, 则存在非零常数,使得(10)设为连续函数,则等于( )(A)(B)(C) (D) 0(11)设是3阶方阵,将的第1列与第2列交换得,再把的第2列加
15、到第3列得,则满足的可逆矩阵为( )(A) (B) (C) (D)(12)设为满足的任意两个非零矩阵,则必有( )(A)的列向量组线性相关的行向量组线性相关(B)的列向量组线性相关的列向量组线性相关 (C)的行向量组线性相关的行向量组线性相关(D)的行向量组线性相关的列向量组线性相关(13)设随机变量服从正态分布对给定的,数满足,若,则等于( )(A) (B)(C) (D) (14)设随机变量独立同分布,且其方差为 令,则( )(A) (B) (C) (D)三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分)设,证明.(16)(本题满分11分
16、)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为 问从着陆点算起,飞机滑行的最长距离是多少?(注:kg表示千克,km/h表示千米/小时)(17)(本题满分12分)计算曲面积分其中是曲面的上侧.(18)(本题满分11分)设有方程,其中为正整数.证明此方程存在惟一正实根,并证明当时,级数收敛.(19)(本题满分12分)设是由确定的函数,求的极值点和极值.(20)(本题满分9分)设有齐次线性方程组试问取何值
17、时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵的特征方程有一个二重根,求的值,并讨论是否可相似对角化.(22)(本题满分9分)设为随机事件,且,令 求:(1)二维随机变量的概率分布. (2)和的相关系数(23)(本题满分9分)设总体的分布函数为其中未知参数为来自总体的简单随机样本,求:(1)的矩估计量. (2)的最大似然估计量2003年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1) = .(2)曲面与平面平行的切平面的方程是 .(3)设,则= .(4)从的基到基的过渡矩阵为 .(5)设二维随机变量的概
18、率密度为 ,则 .(6)已知一批零件的长度(单位:cm)服从正态分布,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则的置信度为0.95的置信区间是 .(注:标准正态分布函数值二、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一个符合题目要求)(1)设函数在内连续,其导函数的图形如图所示,则有( )(A)一个极小值点和两个极大值点(B)两个极小值点和一个极大值点 (C)两个极小值点和两个极大值点(D)三个极小值点和一个极大值点(2)设均为非负数列,且,则必有(A)对任意成立 (B)对任意成立(C)极限不存在 (D)极限不存在(3)已知函数在点的某个邻域
19、内连续,且,则(A)点不是的极值点(B)点是的极大值点(C)点是的极小值点(D)根据所给条件无法判断点是否为的极值点(4)设向量组I:可由向量组II:线性表示,则( )(A)当时,向量组II必线性相关 (B)当时,向量组II必线性相关(C)当时,向量组I必线性相关 (D)当时,向量组I必线性相关(5)设有齐次线性方程组和,其中均为矩阵,现有4个命题: 若的解均是的解,则秩秩 若秩秩,则的解均是的解 若与同解,则秩秩 若秩秩, 则与同解以上命题中正确的是( )(A)(B)(C)(D)(6)设随机变量,则( )(A)(B)(C)(D) 三、(本题满分10分)过坐标原点作曲线的切线,该切线与曲线及轴
20、围成平面图形.(1)求的面积.(2)求绕直线旋转一周所得旋转体的体积.四、(本题满分12分)将函数展开成的幂级数,并求级数的和.五 、(本题满分10分)已知平面区域,为的正向边界.试证:(1).(2)六 、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层.汽锤每次击打,都将克服土层对桩的阻力而作功.设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为).汽锤第一次击打将桩打进地下m.根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数.问(1)汽锤击打桩3次后,可将桩打进地下多深?(2)若击打次数不限,汽锤至多能将桩打进地下多深?(注:m表示长度单位米.
21、)七 、(本题满分12分)设函数在内具有二阶导数,且是的反函数.(1)试将所满足的微分方程变换为满足的微分方程.(2)求变换后的微分方程满足初始条件的解.八 、(本题满分12分)设函数连续且恒大于零,其中,(1)讨论在区间内的单调性.(2)证明当时,九 、(本题满分10分)设矩阵,求的特征值与特征向量,其中为的伴随矩阵,为3阶单位矩阵.十 、(本题满分8分)已知平面上三条不同直线的方程分别为 , , .试证这三条直线交于一点的充分必要条件为十一 、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:(
22、1)乙箱中次品件数的数学期望.(2)从乙箱中任取一件产品是次品的概率.十二 、(本题满分8分)设总体的概率密度为 其中是未知参数. 从总体中抽取简单随机样本,记(1)求总体的分布函数.(2)求统计量的分布函数.(3)如果用作为的估计量,讨论它是否具有无偏性.2002年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)= _.(2)已知,则=_.(3)满足初始条件的特解是_.(4)已知实二次型经正交变换可化为标准型,则=_.(5)设随机变量,且二次方程无实根的概率为0.5,则=_.二、选择题(本题共5小题,每小题3分,满分15分
23、.每小题给出的四个选项中,只有一个符合题目要求)(1)考虑二元函数的四条性质:在点处连续, 在点处的一阶偏导数连续,在点处可微, 在点处的一阶偏导数存在.则有:( )(A)(B)(C)(D)(2)设,且,则级数为( )(A)发散 (B)绝对收敛(C)条件收敛 (D)收敛性不能判定.(3)设函数在上有界且可导,则( )(A)当时,必有 (B)当存在时,必有(C) 当时,必有 (D) 当存在时,必有.(4)设有三张不同平面,其方程为()它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为( )(5)设和是相互独立的连续型随机变量,它们的密度函数分别为和,分布函数分别为
24、和,则( )(A)必为密度函数 (B) 必为密度函数(C)必为某一随机变量的分布函数 (D) 必为某一随机变量的分布函数.三、(本题满分6分)设函数在的某邻域具有一阶连续导数,且,当时,若,试求的值.四、(本题满分7分)已知两曲线与在点处的切线相同.求此切线的方程,并求极限.五、(本题满分7分)计算二重积分,其中.六、(本题满分8分)设函数在上具有一阶连续导数,是上半平面(0)内的有向分段光滑曲线,起点为(),终点为().记,(1)证明曲线积分与路径无关.(2)当时,求的值.七、(本题满分7分)(1)验证函数()满足微分方程.(2)求幂级数的和函数.八、(本题满分7分)设有一小山,取它的底面所
25、在的平面为面,其底部所占的区域为,小山的高度函数为.(1)设为区域上一点,问在该点沿平面上何方向的方向导数最大?若此方向的方向导数为,写出的表达式.(2)现欲利用此小山开展攀岩活动,为此需要在山脚下寻找一山坡最大的点作为攀登的起点.也就是说要在的边界线上找出使(1)中达到最大值的点.试确定攀登起点的位置.九、(本题满分6分)已知四阶方阵, 均为四维列向量,其中线性无关,.若,求线性方程组的通解.十、(本题满分8分)设为同阶方阵,(1)若相似,证明的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当为实对称矩阵时,证明(1)的逆命题成立.2001年全国硕士研究生入学统一
26、考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设(为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_.(2)设,则div(gradr)=_.(3)交换二次积分的积分次序:_.(4)设矩阵满足,其中为单位矩阵,则=_.(5)设随机变量的方差是,则根据切比雪夫不等式有估计_.二、选择题(本题共5小题,每小题3分,满分15分.)(1)设函数在定义域内可导,的图形如右图所示,则 的图形为(2)设在点附近有定义,且,则(A).(B)曲面在处的法向量为3,1,1.(C)曲线在处的切向量为1,0,3.(D)曲线在处的切向量为3,0,1.(3)设,则
27、在=0处可导的充要条件为(A)存在.(B)存在.(C)存在.(D)存在.(4)设则与(A)合同且相似.(B)合同但不相似.(C)不合同但相似.(D)不合同且不相似.(5)将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数, 则X和Y的相关系数等于(A)-1.(B)0.(C).(D)1.三、(本题满分6分)求.四、(本题满分6分)设函数在点处可微,且,.求.五、(本题满分8分)设=将展开成的幂级数,并求级数的和.六、(本题满分7分)计算,其中是平面与柱面的交线,从轴正向看去,为逆时针方向.七、(本题满分7分)设在内具有二阶连续导数且,试证:(1)对于内的任一,存在惟一的,使=+成立;
28、(2).八、(本题满分8分)设有一高度为(为时间)的雪堆在融化过程,其侧面满足方程(设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数为0.9),问高度为130(厘米)的雪堆全部融化需多少小时?九、(本题满分6分)设为线性方程组的一个基础解系,其中为实常数.试问满足什么条件时,也为的一个基础解系.十、(本题满分8分)已知3阶矩阵与三维向量,使得向量组线性无关,且满足.(1)记=(),求3阶矩阵,使;(2)计算行列式.十一、(本题满分7分)设某班车起点站上客人数服从参数为()的泊松分布,每位乘客在中途下车的概率为(),且中途下车与否相互独立.以表示在中途下车的人数,求
29、:(1)在发车时有个乘客的条件下,中途有人下车的概率;(2)二维随机变量的概率分布.十二、(本题满分7分)设总体服从正态分布(),从该总体中抽取简单随机样本,(),其样本均值为,求统计量的数学期望.2000年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)=_.(2)曲面在点的法线方程为_.(3)微分方程的通解为_.(4)已知方程组无解,则= _.(5)设两个相互独立的事件和都不发生的概率为,发生不发生的概率与发生不发生的概率相等,则=_.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合
30、题目要求)(1)设、是恒大于零的可导函数,且,则当时,有( )(A)(B)(C)(D)(2)设为在第一卦限中的部分,则有( )(A)(B)(C)(D)(3)设级数收敛,则必收敛的级数为( )(A) (B) (C)(D) (4)设维列向量组线性无关,则维列向量组线性无关的充分必要条件为( )(A)向量组可由向量组线性表示 (B)向量组可由向量组线性表示(C)向量组与向量组等价 (D)矩阵与矩阵等价(5)设二维随机变量服从二维正态分布,则随机变量与 不相关的充分必要条件为( )(A)(B)(C)(D)三、(本题满分6分)求四、(本题满分5分)设,其中具有二阶连续偏导数具有二阶连续导数,求五、(本题
31、满分6分)计算曲线积分,其中是以点为中心为半径的圆周取逆时针方向.六、(本题满分7分)设对于半空间内任意的光滑有向封闭曲面都有其中函数在内具有连续的一阶导数,且求.七、(本题满分6分)求幂级数的收敛区间,并讨论该区间端点处的收敛性.八、(本题满分7分)设有一半径为的球体是此球的表面上的一个定点,球体上任一点的密度与该点到距离的平方成正比(比例常数),求球体的重心位置.九、(本题满分6分)设函数在上连续,且试证:在内至少存在两个不同的点使十、(本题满分6分)设矩阵的伴随矩阵且,其中为4阶单位矩阵,求矩阵.十一、(本题满分8分)某适应性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将熟练工支
32、援其他生产部门,其缺额由招收新的非熟练工补齐.新、老非熟练工经过培训及实践至年终考核有成为熟练工.设第年1月份统计的熟练工与非熟练工所占百分比分别为和记成向量(1)求与的关系式并写成矩阵形式:(2)验证是的两个线性无关的特征向量,并求出相应的特征值.(3)当时,求十二、(本题满分8分)某流水线上每个产品不合格的概率为,各产品合格与否相对独立,当出现1个不合格产品时即停机检修.设开机后第1次停机时已生产了的产品个数为,求的数学期望和方差.十三、(本题满分6分)设某种元件的使用寿命的概率密度为,其中为未知参数.又设是的一组样本观测值,求参数的最大似然估计值.1999年全国硕士研究生入学统一考试数学
33、(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)=_.(2)=_.(3)的通解为=_.(4)设阶矩阵的元素全为1,则的个特征值是 _.(5)设两两相互独立的三事件和满足条件:且已知则=_.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求)(1)设是连续函数是的原函数,则( )(A)当是奇函数时必是偶函数(B)当是偶函数时必是奇函数(C)当是周期函数时必是周期函数 (D)当是单调增函数时必是单调增函数(2)设,其中是有界函数,则在处( )(A)极限不存在(B)极限存在,但不连续(C)连续,但不可导(D)可导(3
34、)设,其中 ,则等于( )(A) (B)(C)(D) (4)设是矩阵,是矩阵,则( )(A)当时,必有行列式(B)当时,必有行列式(C)当时,必有行列式 (D)当时,必有行列式(5)设两个相互独立的随机变量和分别服从正态分布和,则( )(A)(B)(C)(D)三、(本题满分6分)设是由方程和所确定的函数,其中和分别具有一阶连续导数和一阶连续偏导数,求四、(本题满分5分)求其中为正的常数,为从点沿曲线到点的弧.五、(本题满分6分)设函数二阶可导且过曲线上任意一点作该曲线的切线及轴的垂线,上述两直线与轴所围成的三角形的面积记为,区间上以为曲线的曲边梯形面积记为,并设恒为1,求曲线的方程.六、(本题
35、满分7分)论证:当时,七、(本题满分6分)为清除井底的淤泥,用缆绳将抓斗放入井底,抓起污泥后提出井口(见图).已知井深30m,抓斗自重400N,缆绳每米重50N,抓斗抓起的污泥重2000N,提升速度为3m/s,在提升过程中,污泥以20N/s的速率从抓斗缝隙中漏掉.现将抓起污泥的抓斗提升至井口,问克服重力需作多少焦耳的功?(说明:1N1m=1Jm,N,s,J分别表示米,牛,秒,焦.抓斗的高度及位于井口上方的缆绳长度忽略不计.)八、(本题满分7分)设为椭球面的上半部分,点为在点处的切平面,为点到平面的距离,求九、(本题满分7分)设(1)求的值.(2)试证:对任意的常数级数收敛.十、(本题满分8分)
36、设矩阵其行列式又的伴随矩阵有一个特征值,属于的一个特征向量为求和的值.十一、(本题满分6分)设为阶实对称矩阵且正定,为实矩阵,为的转置矩阵,试证为正定矩阵的充分必要条件是的秩十二、(本题满分8分)设随机变量与相互独立,下表列出了二维随机变量联合分布率及关于和关于的边缘分布率中的部分数值,试将其余数值填入表中的空白处.X Y1十三、(本题满分6分)设的概率密度为,是取自总体的简单随机样本(1)求的矩估计量.(2)求的方差1998年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)=_.(2)设具有二阶连续导数,则=_.(3)设为
37、椭圆其周长记为则=_.(4)设为阶矩阵为的伴随矩阵为阶单位矩阵.若有特征值则必有特征值_.(5)设平面区域由曲线及直线所围成,二维随机变量在区域上服从均匀分布,则关于的边缘概率密度在处的值为_.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求)(1)设连续,则=( )(A)(B)(C)(D)(2)函数不可导点的个数是( )(A)3 (B)2 (C)1 (D)0 (3)已知函数在任意点处的增量且当时是的高阶无穷小,则等于( )(A)(B)(C)(D) (4)设矩阵是满秩的,则直线与直线( )(A)相交于一点(B)重合(C)平行但不重合(D)异面(5)
38、设是两个随机事件,且则必有(A)(B)(C)(D)三、(本题满分5分)求直线在平面上的投影直线的方程,并求绕轴旋转一周所成曲面的方程.四、(本题满分6分)确定常数使在右半平面上的向量为某二元函数的梯度,并求五、(本题满分6分)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度从海平面算起)与下沉速度之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为体积为海水密度为仪器所受的阻力与下沉速度成正比,比例系数为试建立与所满足的微分方程,并求出函数关系式六、(本题满分7分)计算其中为下半平面的上侧为大于零的常数.七、(本题满分6分)求八、(本题满分5分)设正向数列单调减少,且发散,试问级数是否收敛?并说明理由.九、(本题满分6分)设是区间上的