第6章-导体和介质1xue讲解.ppt

上传人:得****1 文档编号:76426400 上传时间:2023-03-10 格式:PPT 页数:31 大小:704.50KB
返回 下载 相关 举报
第6章-导体和介质1xue讲解.ppt_第1页
第1页 / 共31页
第6章-导体和介质1xue讲解.ppt_第2页
第2页 / 共31页
点击查看更多>>
资源描述

《第6章-导体和介质1xue讲解.ppt》由会员分享,可在线阅读,更多相关《第6章-导体和介质1xue讲解.ppt(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第六章静电场中的导体和电介质物质按导电与否的分类:物质按导电与否的分类:1.1.导体导体:内部有内部有可自由移动的电荷可自由移动的电荷自由电子自由电子 。2.2.绝缘体(绝缘体(电介质):电介质):内部无内部无可自由移动的可自由移动的 电荷电荷理想状态。理想状态。3.3.半导体半导体:介于上述两者之间。介于上述两者之间。本章研究的问题:本章研究的问题:导体和电介质带电和它周围电场的关系问题。导体和电介质带电和它周围电场的关系问题。静电感应静电感应:在静电场力作用下,导体中电荷重新分在静电场力作用下,导体中电荷重新分布的现象。布的现象。无外电场时无外电场时6-1 6-1 导体的静电平衡性质导体的

2、静电平衡性质 6-1-1 导体的静电平衡条件导体的静电感应过程导体的静电感应过程加上外电场后加上外电场后E外外+加上外电场后加上外电场后E外外+导体的静电感应过程导体的静电感应过程+E+E外外E感感+=内内0导体达到静电平衡导体达到静电平衡E外外E感感用场强来描写:用场强来描写:1 1.导体内部场强处处为零;导体内部场强处处为零;2 2.表面场强垂直于导体表面。表面场强垂直于导体表面。静电平衡静电平衡导体中电荷的宏观定向运动终止,电荷导体中电荷的宏观定向运动终止,电荷 分布不随时间改变。分布不随时间改变。用电势来描写:用电势来描写:1 1.导体为一等势体;导体为一等势体;2 2.导体表面是一个

3、等势面。导体表面是一个等势面。静电平衡条件:静电平衡条件:-F F金属球放入前电场为一均匀场金属球放入前电场为一均匀场E金属球放入后电场线发生弯曲金属球放入后电场线发生弯曲 电场为一非均匀场电场为一非均匀场+E6-1-2 静电平衡时导体上的电荷分布1.1.在静电平衡下,导体所带的电荷只能分布在导在静电平衡下,导体所带的电荷只能分布在导体的表面,导体内部没有净电荷。体的表面,导体内部没有净电荷。导体内部没有净电荷,电荷只能分布在导体表面。导体内部没有净电荷,电荷只能分布在导体表面。结论:S2.2.处于静电平衡的导体,其表面上各点的电荷密度处于静电平衡的导体,其表面上各点的电荷密度与表面邻近处场强

4、的大小成正比。与表面邻近处场强的大小成正比。高斯定理:高斯定理:方向:表面外法线方向方向:表面外法线方向尖端放电:应用应用:避雷针:避雷针3.静电平衡下的孤立导体,其表面处电荷密度静电平衡下的孤立导体,其表面处电荷密度 与该与该表面曲率有关,曲率(表面曲率有关,曲率(1/R)越大的地方电荷密度也越大的地方电荷密度也越大,曲率越小的地方电荷密度也越小。越大,曲率越小的地方电荷密度也越小。6.1.3 空腔导体 1 1腔内无带电体腔内无带电体 S电荷分布在导体外表面,导体内部和内表电荷分布在导体外表面,导体内部和内表面没净电荷。面没净电荷。结论:2.2.腔内有带电体腔内有带电体 在静电平衡下,在静电

5、平衡下,腔体内表面所带的电量和腔内带电腔体内表面所带的电量和腔内带电体所带的电量等量异号,腔体外表面所带的电量由体所带的电量等量异号,腔体外表面所带的电量由电荷守恒定律决定。电荷守恒定律决定。结论:+q1q1q1+q2q2放入放入 后后q1未引入未引入 时时q16-1-4 静电屏蔽1 1、空腔导体,腔内没有电荷、空腔导体,腔内没有电荷空腔导体起到屏蔽外电场空腔导体起到屏蔽外电场的作用。的作用。接地的空腔导体可以屏接地的空腔导体可以屏蔽内电场对外部的影响。蔽内电场对外部的影响。空腔导体空腔导体(不论是否接地)的内部空间不不论是否接地)的内部空间不受受腔外电荷和电场的影响;接地的空腔导腔外电荷和电

6、场的影响;接地的空腔导体,腔外体,腔外空间不受空间不受腔内电荷和电场的影响。腔内电荷和电场的影响。静电屏蔽:静电屏蔽:2 2、空腔导体,腔内存在电荷、空腔导体,腔内存在电荷+q-+q-+导体存在时静电场的分析与计算:导体存在时静电场的分析与计算:依据依据:1.1.电荷守恒定律电荷守恒定律2.2.静电场的基本规律:静电场的基本规律:高斯定律或场强环流定律。高斯定律或场强环流定律。3.3.导体的静电平衡条件:导体的静电平衡条件:或导体为等势体或导体为等势体例例1.有一外半径有一外半径R1,内半径为内半径为R2的金属球壳。在球壳的金属球壳。在球壳中放一半径为中放一半径为R3的金属球,球壳和球均带有电

7、量的金属球,球壳和球均带有电量10-8C的正电荷。问:(的正电荷。问:(1)两球电荷分布。()两球电荷分布。(2)球心的电)球心的电势。(势。(3)球壳电势。)球壳电势。解:解:解:解:(r R3)(R3 r R2)1、电荷、电荷+q分布在内球表面。分布在内球表面。2、球壳内表面带电、球壳内表面带电-q。3、球壳外表面带电、球壳外表面带电2q。(R2 r R1)R3R2R1(2)(3)若用若用导线将球和壳连接起来,结果又将如何?导线将球和壳连接起来,结果又将如何?BAq1q2例例2.两块大导体平板,面积为两块大导体平板,面积为S,分别带电分别带电q1和和q2,两极两极板间距远小于平板的线度。求

8、平板各表面的电荷密度。板间距远小于平板的线度。求平板各表面的电荷密度。解:解:解:解:电荷守恒:电荷守恒:由静电平衡条件,导体板内由静电平衡条件,导体板内E=02341如果使板接地如果使板接地+q+qABdq2 =-q1若若q2板原来不带电,情况如何?板原来不带电,情况如何?例例3 3.两金属球体,半径分别为两金属球体,半径分别为R,r R,r。它们相距很远,它们相距很远,用一导线将它们相联。当它们带电时,求两球电荷面用一导线将它们相联。当它们带电时,求两球电荷面密度和曲率半径的关系。密度和曲率半径的关系。RQqr设两球带电分别为设两球带电分别为 Q Q 及及 q q因为两球相距很远,所以其中

9、一球上的电荷对另一球因为两球相距很远,所以其中一球上的电荷对另一球表面的电势的影响可以认为是零。表面的电势的影响可以认为是零。rQq40=R4024=RQR24=rqr静电平衡时两球的电势相等静电平衡时两球的电势相等,所以所以:rQq=R=Rr 此式表明此式表明,导体的曲率半径越小导体的曲率半径越小,电荷面密度越大。电荷面密度越大。应用:避雷针应用:避雷针rR=rQqR22尖端放电现象尖端放电现象例例4.4.无限大的带电平面的场中平行放无限大的带电平面的场中平行放置一无限大金属平板,求:金属板两置一无限大金属平板,求:金属板两面电荷的面密度。面电荷的面密度。解解:设金属板面电荷密度设金属板面电

10、荷密度由电量守恒由电量守恒导体体内任一点导体体内任一点P P场强为零场强为零练习练习.一个未带电的空腔导体球壳,内半径为,在一个未带电的空腔导体球壳,内半径为,在 腔内离球心的距离为腔内离球心的距离为d处处(dR),固定一电量为固定一电量为q的点电的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处荷,用导线把球壳接地后,再把地线撤去,选无穷远处的电势为零点,则球心的电势为零点,则球心0点处的电势为:点处的电势为:d+q2.在静电场中,下列说法在静电场中,下列说法中哪个是正确的?中哪个是正确的?()带正电荷()带正电荷 的导体,的导体,其电势一定是正值;其电势一定是正值;()等势面上各点的场

11、()等势面上各点的场强一定相等;强一定相等;()场强处处为零,电()场强处处为零,电势也一定为零;势也一定为零;()场强相等处,电势()场强相等处,电势梯度一定相等梯度一定相等 D 3.半径为和半径为和r的两个金属球,相距很远,用一根细长导的两个金属球,相距很远,用一根细长导线将两球连在一起,并使它们带电,在忽略导线的影响线将两球连在一起,并使它们带电,在忽略导线的影响下,两球表面的电荷密度之比为下,两球表面的电荷密度之比为 D .在一个原来不带电的外表面为球形的空腔导体内,在一个原来不带电的外表面为球形的空腔导体内,放有一带正电量为的带电导体,如图所示,则比放有一带正电量为的带电导体,如图所

12、示,则比较空腔导体的电势较空腔导体的电势和导体的电势和导体的电势时,可得时,可得以下结论以下结论()()()()()()()因空腔形状不是球形()因空腔形状不是球形,两者无法比较。,两者无法比较。C.如图所示,两同心金属球壳,它们离地球很远,内球如图所示,两同心金属球壳,它们离地球很远,内球壳用细导线壳用细导线 穿过外壳上的绝缘小孔与地连接,外球壳上穿过外壳上的绝缘小孔与地连接,外球壳上带有正电荷,则内球壳:带有正电荷,则内球壳:()、不带电:()、带正电荷;()、带负电荷;、不带电:()、带正电荷;()、带负电荷;()、内球壳表面带负电荷()、内球壳表面带负电荷,内表面带等量正电荷,内表面带

13、等量正电荷+-C 6.如图所示,两个同心均匀带电球面,内球面半径为如图所示,两个同心均匀带电球面,内球面半径为,带电量为,外球面半径为,带电量为,带电量为,外球面半径为,带电量为,设无穷远处电势为零,则内球面里距离球心为,设无穷远处电势为零,则内球面里距离球心为r处的点的电势为多少?处的点的电势为多少?rP利用电势叠加原理利用电势叠加原理o7.三块相互平行的导体三块相互平行的导体 板,相互之间的距离为板,相互之间的距离为d1、d2,比板面积线度小得多,外面二板用导线连接,中间板比板面积线度小得多,外面二板用导线连接,中间板上带电,设左右两面上电荷面密度分别为上带电,设左右两面上电荷面密度分别为

14、 1,2,如图所如图所示,则比值示,则比值 1 2=?1 2,d1d2UU8.将一负电荷将一负电荷 从无穷远处移到一个不带电的导体附近,从无穷远处移到一个不带电的导体附近,则导体的电场强度将如何变化?导体的电势又将如何变化则导体的电场强度将如何变化?导体的电势又将如何变化?不变,变小不变,变小9.在电量为在电量为q电场中,放入一不带电的金属球,从电场中,放入一不带电的金属球,从球心球心0到点电荷所在处的距离为到点电荷所在处的距离为r,金属球上的感应电金属球上的感应电荷净电量荷净电量这这 些感应电荷在点处产生的电场强度些感应电荷在点处产生的电场强度q10.试用静电场的环路定理证明,在静电平衡下的空腔试用静电场的环路定理证明,在静电平衡下的空腔导体,当空腔内部无任何带电体时,空腔内的场强处处导体,当空腔内部无任何带电体时,空腔内的场强处处为零。为零。abC 证:反证法证:反证法设空腔内有电场,设空腔内有电场,ab为其为其中的一条电场线,利用环中的一条电场线,利用环流定理可得:流定理可得:与环流定理矛盾,故空腔内的场强处处为零与环流定理矛盾,故空腔内的场强处处为零.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁