《2016秋九年级数学上册第21章二次根式复习课件新版华东师大版.ppt》由会员分享,可在线阅读,更多相关《2016秋九年级数学上册第21章二次根式复习课件新版华东师大版.ppt(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、复习和小结第21章 二次根式知识梳理考点分类复习归纳课后演练加 、减、乘、除二 次 根 式三个概念两个性质两个公式四种运算最简二次根式同类二次根式有理化因式1.2.2.1.知识梳理知识梳理1二次根式的概念一般地,形如_(a0)的式子叫做二次根式;对于二次根式的理解:带有根号;被开方数是非负数,即a0.易错点 二次根式中,被开方数一定是非负数,否则就没有意义.2二次根式的性质3最简二次根式满足下列两个条件的二次根式,叫做最简二次根式(1)被开方数不含_;(2)被开方数中不含能_的因数或因式开得尽方分母4二次根式的运算 _(a0,b0);_(a0,b0)二次根式加减时,可以先将二次根式化成_,再将
2、_的二次根式进行合并被开方数相同 最简二次根式1.当x _ 时,有意义.3.求下列二次根式中字母的取值范围.解得 -5x3解:说明:二次根式被开方数不小于0,所以求二次根式中字母的取值范围常转化为不等式(组).3a=4考点分类考点分类确定二次根式中被开方数所含字母的取值范围一2.有意义的条件是 .1.1.已知:+=0,+=0,求 x-y 的值.2.已知x,y为实数,且 +3(y-2)2=0,则x-y的值为()A.3 B.-3 C.1 D.-1解:由题意,得 x-4=0 且 2x+y=0解得 x=4,y=-8x-y=4-(-8)=4+8=12D二次根式的非负性的应用二方法技巧 初中阶段主要涉及三
3、种非负数:0,0,a20.如果若干个非负数的和为0,那么这若干个非负数都必为0.即由a0,b0,c0且abc0,一定得到abc0,这是求一个方程中含有多个未知数的有效方法之一.二次根式性质的应用三 设 a,b,用含a,b的式子表示 ,则下列表示正确的是()A0.03ab B3ab C0.1ab3 D0.1a3bC二次根式的化简四A二次根式的运算五1.确定二次根式中被开方数所含字母的取值范围2.二次根式的非负性的应用3.二次根式性质的应用4.二次根式的化简5.二次根式的运算复习归纳复习归纳C0课后演练课后演练 3 3若若x x,则化简,则化简的结果是的结果是4.下列各式中,是最简二次根式的是()
4、3B5 5.下列各式中那些是二次根式?那些不是?为下列各式中那些是二次根式?那些不是?为什什么?么?a0-(a2+1)0(a-1)206.计算:若a为底,b为腰,此时底边上的高为三角形的面积为(2)若满足上式的a,b为等腰三角形的两边,求这个等腰三角形的面积.设a、b为实数,且|2-|2-a|+|+b-2=-2=0 解:若a为腰,b为底,此时底边上的高为三角形的面积为7.(2)如图所示,ADDC于D,BCCD于C,ABPDC若点P为线段CD上动点.已知ABP的一边AB=则AD=_ BC=_12(1)在如图所示的44的方格中画出格点ABP,使三角形的三边为 8.设DP=a,请用含a的代数式表示AP,BP,则AP=_,BP=_.当a=1 时,则PA+PB=_,当a=3,则PA+PB=_.PA+PB是否存在一个最小值?