《中学高三数学-第七章-第2讲-解三角形应用举例复习课件-新人教A版 (2).ppt》由会员分享,可在线阅读,更多相关《中学高三数学-第七章-第2讲-解三角形应用举例复习课件-新人教A版 (2).ppt(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、中学高三数学中学高三数学-第七章第七章-第第2讲-解三角形解三角形应用用举例复例复习课件件-新人教新人教A版版1解斜三角形的常用定理与公式(1)三角形内角和定理:ABC180;sin(AB)_;cos(AB)_.sinCcosC(2)正弦定理:_(R 为ABC 的外接圆半径)2Ra b csinA sinB sinCc2a2b22abcosC(3)余弦定理:_.2 2(4)三角形面积公式:_.(5)三角形边角定理:大边对大角同,大角对大边2利用正弦定理,可以解决两类有关三角形的问题(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和
2、角)3利用余弦定理,可以解决两类有关三角形的问题(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角3 3A等腰直角三角形B直角三角形C等腰三角形D等边三角形1在ABC中,若2acosBc,则ABC的形状一定是()C2如图 721 某河段的两岸可视为平行,在河段的一岸边选取两点A,B,观察对岸的点C,测得CAB75,CBA45,且 AB200 米则 A,C 两点的距离为()图 721A4 4面积为_.D15 5考点1 向量在三角形中的应用C(c,0)(1)若 c5,求 sinA 的值;(2)若A 为钝角,求 c 的取值范围例1:已知ABC的三个顶点的直角坐标分别为A(3,
3、4),B(0,0),6 67 7(1)角的处理方法通常有三类:一是用边表示角,如正余弦定理;二是用向量表示角,如数量积的定义;三是用直线的斜率表示角(2)用向量处理角的问题时要注意两点:一是要注意角的取值范围;二是利用向量处理ABC 的角,角A 是直角的充要条件是8 8【互动探究】9 91010考点2 有关三角形的边角计算问题1111121213131414解三角形与两角和与差的三角函数交汇处问题要注意以下几点:一是已知三角形的三边可以求任意一个内角的正弦值与余弦值,可以求三角形的面积;二是要注意角的取值范围,如当角的余弦值为正数且不共线时,此角一定为锐角,如当角的余弦值为负数且不共线时,此角
4、一定为钝角,如当角的余弦值为零时,此角一定为直角1515【互动探究】2(2011 年广东广州二模)如图722,渔船甲位于岛屿 A的南偏西 60方向的 B 处,且与岛屿 A 相距 12 海里,渔船乙以10海里/小时的速度从岛屿 A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东的方向追赶渔船乙,刚好用 2 小时追上图 722(1)求渔船甲的速度;(2)求 sin的值1616171718181919易错、易混、易漏13在三角形中,对三边长度成等比数列或成等差数列的条件不会用例题:在ABC 中,角 A,B,C 所对的边分别为 a,b,c,依次成等比数列(1)求角 B 的取值范围;2020212
5、1【失误与防范】主要问题是学生对三角形的三边成等比数列这一条件不会使用.第一,看不出b2ac 和余弦定理之间的联系;第二是在余弦定理中不知道使用基本不等式求cosB 的取值范围.将一个假分式化为带分式是一条基本规律,需要好好体会.22221运用正弦定理、余弦定理与三角形面积公式可以求有关三角形的边、角、外接圆半径、面积的值或范围等基本问题2由斜三角形六个元素(三条边和三个角)中的三个元素(其中至少有一边),求其余三个未知元素的过程,叫做解斜三角形其中已知两边及一边的对角解三角形可能出现无解,或一解或两解的情况2323本节的难点是三角形形状的判断与三角形实际应用问题的解决主要是学生看不到问题的本质,受到许多非本质问题的干扰要加强将实际问题转化为数学问题的能力的训练2424谢谢观赏谢谢观赏