《计量经济学期末大作业.pdf》由会员分享,可在线阅读,更多相关《计量经济学期末大作业.pdf(2页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1.1.用普通最小二乘法估计模型用普通最小二乘法估计模型设粮食生产函数为:lnY=0+1lnX1+2lnX2+3lnX3+4lnX4+5lnX5+6lnX6+u表1.1中国粮食生产对相关投入资料的回归Dependent Variable:LOG(Y)Method:Least SquaresDate:12/12/18Time:15:23Sample:1 31Included observations:31VariableCLOG(X1)LOG(X2)LOG(X3)LOG(X4)LOG(X5)LOG(X6)R-squaredS.E.of regressionSum squared residLog
2、 likelihoodF-statisticProb(F-statistic)Coefficient-0.7671850.7568770.2462850.0001810.029766-0.0324650.050808Std.Error0.3673580.0923520.0974030.1083230.0324370.0338920.041579t-Statistic-2.0883848.1955482.5285130.0016710.917651-0.9578981.221951Prob.0.04750.00000.01840.99870.36790.34770.23367.0321161.2
3、71625-0.461125-0.137322-0.3555731.2750600.984981 Mean dependent var0.981226 S.D.dependent var0.174237 Akaike info criterion0.728602 Schwarz criterion14.14744 Hannan-Quinn criter.262.3231 Durbin-Watson stat0.000000Adjusted R-squared由表可得:lnY=-0.767+0.757lnX1+0.246lnX2+0.0002lnX3+0.03lnX4+0.032lnX5+0.0
4、51lnX6(-2.088)(8.20)(2.53)(0.002)(0.92)(-0.96)(1.22)R2=0.9850R2=0.9812 F=262.32由于 R2 较大且接近于 1,而且F0.05(6,24)=2.51,故认为粮食生产与上述解释变量间总体线性关系显著。但由于其中X3、X4、X5、X6 前参数估计值未能通过t 检验,而且X5 参数符号的经济意义也不合理,故认为解释变量间存在多重共线性。2.2.检验简单相关系数检验简单相关系数表 1.2相关系数表LOG(X1)LOG(X2)LOG(X3)LOG(X4)LOG(X5)LOG(X6)LOGLOG(X1)(X1)1.0000000.
5、9345020.9452600.6735680.7508390.790784LOGLOG(X2)(X2)0.9345021.0000000.9285290.6847110.7837510.749561LOGLOG(X3)(X3)0.9452600.9285291.0000000.5946020.7182030.857865LOGLOG(X4)(X4)0.6735680.6847110.5946021.0000000.7259430.334177LOGLOG(X5)(X5)0.7508390.7837510.7182030.7259431.0000000.439976LOGLOG(X6)(X6)
6、0.7907840.7495610.8578650.3341770.4399761.0000003.3.找出最简单的回归形式找出最简单的回归形式分别作出lnY 关于 lnX1,lnX2,lnX3,lnX4,lnX5,lnX6 的回归,发现lnY 关于 lnX1 的回归具有最大的可决系数:lnY=0.684+1.004 lnX1(-3.08)(35.14)R2=0.9771R2=0.9763可见,粮食生产受粮食播种面积的影响最大,与经验相符合,因此选该一元回归模型为初始的回归模型。4.4.逐步回归逐步回归将其他解释变量分别导入上述初始回归模型,寻找最佳回归方程。表 1.3逐步回归结果C CLOG
7、(X1)LOG(X1)LOG(X2)LOG(X2)LOG(X3)LOG(X3)LOG(X4)LOG(X4)LOG(X5)LOG(X5)LOG(X6)LOG(X6)R R2 2Y=f(X1)-0.6841.004t 值(-3.08)35.14Y=f(X1,X2)-0.9150.8120.238t 值(-4.26)11.32.87Y=f(X1,X2,X3)-0.7220.7690.2090.071t 值(-2.25)8.622.310.81Y=f(X1,X2,X4)-0.90.8130.241-0.005t 值(-3.65)11.037.79(-0.18)Y=f(X1,X2,X5)-0.7890.
8、820.281-0.041t 值(-3.46)11.63.24(-1.43)Y=f(X1,X2,X6)-1.0810.7610.2310.05t 值(-4.75)10.152.891.76(1)在初始模型中引入 X2,模型的R2 提高,并且参数符号合理,变量也通过显著性水平为 5%的 t 检验。2(2)引入 X3,模型的R 略下降,且参数符号合理,但变量未通过显著性水平为 10%的 t检验。2(3)去掉 X3,引入 X4。但模型的R 没有只有 X1,X2 高;X4 未通过显著性水平为 10%的 t检验。2(4)去掉 X4,引入 X5。模型的R 比只有 X1,X2 略高,但 X5 未通过显著性水平为10%的 t检验,且参数符号与经济意义不相符。2(5)去掉 X5,引入 X6。模型的R有所提高,且 X6 通过显著性水平为 10%的 t 检验,参数符号与经济意义相符。在第五步所得模型基础上,再引入单个X3、X4、X5,发现以 X1、X2、X6 为解释变量的回归效果最好,即拟合结果为:lnY=1.081+0.761lnX1+0.231 lnX2+0.05lnX60.97630.9810.98080.98030.98170.9823