《23 VAR脉冲方差分解协整.ppt》由会员分享,可在线阅读,更多相关《23 VAR脉冲方差分解协整.ppt(81页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、一、一、VAR模型及特点模型及特点二、二、VAR模型滞后阶数模型滞后阶数p的确定方法的确定方法三、格兰杰因果关系检验三、格兰杰因果关系检验四、脉冲响应函数与方差分解四、脉冲响应函数与方差分解五、五、Jonhanson协整检验协整检验 六、建立六、建立VAR模型模型七、利用七、利用VAR模型进行预测模型进行预测八、向量误差修正模型八、向量误差修正模型VAR 模型分析模型分析1.VAR模型模型向量自回归模型向量自回归模型 经经典典计计量量经经济济学学中中,由由线线性性方方程程构构成成的的联联立立方方程程组组模模型型,由由科科普普曼曼斯斯(poOKmans1950)和和霍霍德德科科普普曼曼斯斯(Ho
2、od-poOKmans1953)提提出出。联联立立方方程程组组模模型型在在20世世纪纪五五、六六十十年年代代曾曾轰轰动动一一时时,其其优优点点主主要要在在于于对对每每个个方方程程的的残残差差和和解解释释变变量量的的有有关关问问题题给给予予了了充充分分考考虑虑,提提出出了了工工具具变变量量法法、两两阶阶段段最最小小二二乘乘法法、三三阶阶段段最最小小二二乘乘法法、有有限限信信息息极极大大似似然然法法和和完完全全信信息息极极大大似似然然法法等等参参数数的的估估计计方方法法。这这种种建建模模方方法法用用于于研研究究复复杂杂的的宏宏观观经经济济问问题题,有有时时多多达达万万余个内生变量。当时主要用于预测
3、和余个内生变量。当时主要用于预测和一、一、VARVAR模型及特点模型及特点政政策策分分析析。但但实实际际中中,这这种种模模型型的的效效果果并并不不令令人人满满意。意。联立方程组模型的主要问题:联立方程组模型的主要问题:(1)这这种种模模型型是是在在经经济济理理论论指指导导下下建建立立起起来来的的结结构构模模型型。遗憾的是经济理论并未明确的给出变量之间的动态关系。遗憾的是经济理论并未明确的给出变量之间的动态关系。(2)内生、外生变量的划分问题较为复杂;)内生、外生变量的划分问题较为复杂;(3)模模型型的的识识别别问问题题,当当模模型型不不可可识识别别时时,为为达达到到可可识识别别的的目目的的,常
4、常要要将将不不同同的的工工具具变变量量加加到到各各方方程程中中,通通常常这这种种工工具变量的解释能力很弱;具变量的解释能力很弱;(4)若若变变量量是是非非平平稳稳的的(通通常常如如此此),则则会会违违反反假假设设,带来更严重的伪回归问题。带来更严重的伪回归问题。由此可知,经济理论指导下建立的结构性经典计量模由此可知,经济理论指导下建立的结构性经典计量模型存在不少问题。为解决这些问题而提出了一种用非结构型存在不少问题。为解决这些问题而提出了一种用非结构性方法建立各变量之间关系的模型。本章所要介绍的性方法建立各变量之间关系的模型。本章所要介绍的VARVAR模模型和型和VECVEC模型,就是非结构性
5、的方程组模型。模型,就是非结构性的方程组模型。VAR(Vector Autoregression)VAR(Vector Autoregression)模型由西姆斯模型由西姆斯(C.A.Sims,1980C.A.Sims,1980)提出提出,他推动了对经济系统动态分析的他推动了对经济系统动态分析的广泛应用,是当今世界上的主流模型之一。受到普遍重视,广泛应用,是当今世界上的主流模型之一。受到普遍重视,得到广泛应用。得到广泛应用。VARVAR模模型型主主要要用用于于预预测测和和分分析析随随机机扰扰动动对对系系统统的的动动态态冲冲击,冲击的大小、正负及持续的时间。击,冲击的大小、正负及持续的时间。VA
6、RVAR模模型型的的定定义义式式为为:设设 是是N N1 1阶阶时时序序应变量列向量,则应变量列向量,则p p阶阶VARVAR模型(记为模型(记为VAR(p)VAR(p)):):(1)式中,式中,是第是第i i个待估参数个待估参数N NN N阶矩阵阶矩阵;是是N N1 1阶随机误差列向量阶随机误差列向量;是是N NN N阶方差协方差矩阵;阶方差协方差矩阵;p p 为模型最大滞后阶数。为模型最大滞后阶数。由式(由式(11.111.1)知,)知,VAR(p)VAR(p)模型,是以模型,是以N N个第个第t t期变量期变量 为应变量,以为应变量,以N N个应变量个应变量的最大的最大p p阶滞后变量为
7、解释变量的方程组模型,方程组模阶滞后变量为解释变量的方程组模型,方程组模型中共有型中共有N N个方程。显然,个方程。显然,VARVAR模型是由单变量模型是由单变量ARAR模型推广到模型推广到多变量组成的多变量组成的“向量向量”自回归模型。自回归模型。对于两个变量(对于两个变量(N=2N=2),),时,时,VAR(2)VAR(2)模型为模型为用矩阵表示:用矩阵表示:待估参数个数为待估参数个数为2 2 2 22=2=用线性方程组表示用线性方程组表示VAR(2)VAR(2)模型:模型:显显然然,方方程程组组左左侧侧是是两两个个第第t t期期内内生生变变量量;右右侧侧分分别别是是两两个个1 1阶阶和和
8、两两个个2 2阶阶滞滞后后应应变变量量做做为为解解释释变变量量,且且各各方方程程最最大大滞滞后后阶阶数数相相同同,都都是是2 2。这这些些滞滞后后变变量量与与随随机误差项不相关(假设要求)。机误差项不相关(假设要求)。由于仅有内生变量的滞后变量出现在等式的由于仅有内生变量的滞后变量出现在等式的右侧,故不存在同期相关问题,用右侧,故不存在同期相关问题,用“LSLS”法估计法估计参数,估计量具有一致和有效性。而随机扰动列参数,估计量具有一致和有效性。而随机扰动列向量的自相关问题可由增加作为解释应变量的滞向量的自相关问题可由增加作为解释应变量的滞后阶数来解决。后阶数来解决。这种方程组模型主要用于分析
9、联合内生变量这种方程组模型主要用于分析联合内生变量间的动态关系。联合是指研究间的动态关系。联合是指研究N N个变量个变量 间的相互影响关系,动态是指间的相互影响关系,动态是指p p期滞后。故称期滞后。故称VARVAR模型是分析联合内生变量间的动态关系的动态模模型是分析联合内生变量间的动态关系的动态模型,而不带有任何约束条件,故又称为无约束型,而不带有任何约束条件,故又称为无约束VARVAR模型。建模型。建VARVAR模型的目的:模型的目的:(1 1)预测,且可用于长期预测;)预测,且可用于长期预测;(2 2)脉冲响应分析和方差分解,用于变量间)脉冲响应分析和方差分解,用于变量间的动态结构分析。
10、的动态结构分析。所以所以,VAR,VAR模型既可用于预测模型既可用于预测,又可用于结构又可用于结构分析。近年又提出了结构分析。近年又提出了结构VARVAR模型(模型(SVARSVAR:Structural VARStructural VAR)。)。有取代结构联立方程组模有取代结构联立方程组模型的趋势。由型的趋势。由VARVAR模型又发展了模型又发展了VECVEC模型模型。2.VAR模型的特点模型的特点 VARVAR模型较联立方程组模型有如下特点:模型较联立方程组模型有如下特点:(1 1)VARVAR模模型型不不以以严严格格的的经经济济理理论论为为依依据据。在在建建模模过过程程中中只只需需明明确
11、确两两件件事事:第第一一,哪哪些些变变量量应应进进入入模模型型(要要求求变变量量间间具具有有相相关关关关系系格格兰兰杰杰因因果果关关系系 );第第二二,滞滞后后阶阶数数p p的的确确定定(保保证证残差刚好不存在自相关);残差刚好不存在自相关);(2 2)VARVAR模型对参数不施加零约束(如模型对参数不施加零约束(如t t检验);检验);(3 3)VARVAR模型的解释变量中不含模型的解释变量中不含t t期变量,所期变量,所有与联立方程组模型有关的问题均不存在;有与联立方程组模型有关的问题均不存在;(4 4)VARVAR模型需估计的参数较多。如模型需估计的参数较多。如VARVAR模型模型含含3
12、 3个变量(个变量(N=3N=3),),最大滞后期为最大滞后期为p=2p=2,则有则有 =2=232=1832=18个参数需要估计;个参数需要估计;(5 5)当样本容量较小时,多数参数估计的精)当样本容量较小时,多数参数估计的精度较差,故需大样本,一般度较差,故需大样本,一般n50n50。注意:注意:“VARVAR”需大写,以区别金融风险管理需大写,以区别金融风险管理中的中的VaRVaR。建立建立VARVAR模型只需做两件事模型只需做两件事 第第一一,哪哪些些变变量量可可作作为为应应变变量量?VARVAR模模型型中中应应纳纳入入具具有有相相关关关关系系的的变变量量作作为为应应变变量量,而而变变
13、量量间间是是否否具具有有相相关关关关系系,要要用用格格兰兰杰杰因因果果关关系系检检验验确确定。定。第第二二,确确定定模模型型的的最最大大滞滞后后阶阶数数p p。首首先先介介绍绍确确定定VAR模模型型最最大大滞滞后后阶阶数数p的的方方法法:在在VARVAR模模型型中中解解释释变变量量的的最最大大滞滞后后阶阶数数p p太太小小,残残差差可可能能存存在在自自相相关关,并并导导致致参参数数估估计计的的非非一一致致性性。适适当当加加大大p p值(即增加滞后变量个数),可消除残差中存在值(即增加滞后变量个数),可消除残差中存在 二、二、VARVAR模型模型中滞后阶数中滞后阶数p p的确的确定方法定方法 的
14、的自自相相关关。但但p p值值又又不不能能太太大大。p p值值过过大大,待待估估参参数数多多,自自由由度度降降低低严严重重,直直接接影影响响模模型型参参数数估估计计的的有有效效性性。这里介绍两种常用的确定这里介绍两种常用的确定p p值的方法。值的方法。(1)用用赤赤池池信信息息准准则则(AIC)和和施施瓦瓦茨茨(SC)准准则则确确定定p值值。确确定定p p值值的的方方法法与与原原则则是是在在增增加加p p值值的的过过程程中,使中,使AICAIC和和 SCSC值同时最小。值同时最小。具体做法是具体做法是:对年度:对年度、季度数据,一般比较到季度数据,一般比较到P=4P=4,即分别建立,即分别建立
15、VAR(1)VAR(1)、VAR(2)VAR(2)、VAR(3)VAR(3)、VAR(4)VAR(4)模型,模型,比较比较AICAIC、SCSC,使它们同时取最小值的,使它们同时取最小值的p p值即为所求。值即为所求。而对月度数据,一般比较到而对月度数据,一般比较到P=12P=12。当当AICAIC与与SCSC的最小值对应不同的的最小值对应不同的p p值时,只能用值时,只能用LRLR检验法。检验法。(2)用似然比统计量)用似然比统计量LR选择选择p值。值。LRLR定义为:定义为:式中,式中,和和 分别为分别为VAR(p)VAR(p)和和VAR(p+i)VAR(p+i)模型的对数似然函数值;模型
16、的对数似然函数值;f f为自由度。为自由度。用对数似然比统计量用对数似然比统计量LRLR确定确定P P的方法用案例说的方法用案例说明。明。格兰杰因果关系格兰杰因果关系 1.1.格兰杰因果性定义格兰杰因果性定义 克莱夫克莱夫.格兰杰(格兰杰(Clive.Granger,1969)和西姆斯和西姆斯(C.A.Sims,1972)分别提出了含义相同的定义,故分别提出了含义相同的定义,故除使用除使用“格兰杰非因果性格兰杰非因果性”的概念外,也使用的概念外,也使用“格格兰杰因果性兰杰因果性”的概念。其定义为:的概念。其定义为:如果由如果由 和和 的滞后值决定的的滞后值决定的 的条件分布与的条件分布与仅由仅
17、由 的滞后值所决定的的滞后值所决定的 的条件分布相同,即:的条件分布相同,即:(3)则称则称 对对 存在格兰杰非因果性。存在格兰杰非因果性。格兰杰非因果性的另一种表述为其它条件不格兰杰非因果性的另一种表述为其它条件不变变,若加上若加上 的滞后变量后对的滞后变量后对 的预测精度无的预测精度无显著性改善,则称显著性改善,则称 对对 存在格兰杰非因果性存在格兰杰非因果性关系。关系。为简便,通常把为简便,通常把 对对 存在格兰杰非因果存在格兰杰非因果性关系表述为性关系表述为 对对 存在格兰杰非因果关系存在格兰杰非因果关系(严格讲,这种表述是不正确的)。(严格讲,这种表述是不正确的)。顾名思义,格兰杰非
18、因果性关系,也可以用顾名思义,格兰杰非因果性关系,也可以用“格兰杰因果性格兰杰因果性”概念。概念。2.2.格兰杰因果性检验格兰杰因果性检验 与与 间格兰杰因果关系回归检验式为间格兰杰因果关系回归检验式为 (4)如有必要,可在上式中加入位移项、趋势项、如有必要,可在上式中加入位移项、趋势项、季节虚拟变量等。检验季节虚拟变量等。检验 对对 存在格兰杰非因果存在格兰杰非因果性的零假设是:性的零假设是:显然,如果(显然,如果(4)式中)式中 的滞后变量的回归的滞后变量的回归系数估计值都不显著,则系数估计值都不显著,则 H0 不能被拒绝,即不能被拒绝,即 对对 不不 存在存在 格兰杰因果性格兰杰因果性。
19、反之,如果。反之,如果 的任何的任何一个滞后变量回归系数的估计值是显著的,则一个滞后变量回归系数的估计值是显著的,则 对对 存在格兰杰因果关系。存在格兰杰因果关系。类似的,可检验类似的,可检验 对对 是否存在格兰杰因果关系。是否存在格兰杰因果关系。上述检验可构建上述检验可构建F统计量来完成。统计量来完成。当当 时,接受时,接受H0,对对 不存在格兰杰因果不存在格兰杰因果关系;关系;当当 时,拒绝时,拒绝H0,对对 存在格兰杰因果存在格兰杰因果关系。关系。实际中,使用概率判断。实际中,使用概率判断。注意:注意:(1)由式()由式(4)知)知,格兰杰因果关系检验式格兰杰因果关系检验式,是回是回归式
20、,因此,要求受检变量是平稳的,对非平稳变量归式,因此,要求受检变量是平稳的,对非平稳变量要求是协整的,以避免伪回归。故在进行格兰杰因果要求是协整的,以避免伪回归。故在进行格兰杰因果关系检验之前,要进行单位根检验、对非平稳变量要关系检验之前,要进行单位根检验、对非平稳变量要进行协整检验。进行协整检验。(2)格兰杰因果性,指的是双向因果关系,)格兰杰因果性,指的是双向因果关系,即相关关系。单向因果关系是指因果关系,近年即相关关系。单向因果关系是指因果关系,近年有学者认为单向因果关系的变量也可作为内生变有学者认为单向因果关系的变量也可作为内生变量加入量加入VAR模型;模型;(3)此检验结果与滞后期)
21、此检验结果与滞后期p的关系敏感且两的关系敏感且两回归检验式滞后阶数相同。回归检验式滞后阶数相同。(4)格兰杰因果性检验原假设为:宇宙集、)格兰杰因果性检验原假设为:宇宙集、平稳变量(对非平稳变量要求是协整的)、大样平稳变量(对非平稳变量要求是协整的)、大样本和必须考虑滞后。本和必须考虑滞后。(5)格兰杰因果关系检验,除用于选择建)格兰杰因果关系检验,除用于选择建立立VAR模型的应变量外,也单独用于研究经济变模型的应变量外,也单独用于研究经济变量间的相关或因果关系(回归解释变量的选择)量间的相关或因果关系(回归解释变量的选择)以及研究政策时滞等。以及研究政策时滞等。格兰杰因果性检验的格兰杰因果性
22、检验的EViews命令:命令:在工作文件窗口,选中全部欲检序列名后,在工作文件窗口,选中全部欲检序列名后,选择选择Quicp/Group Statistics/Granger Causality Test,在弹出的序列名窗口,点击,在弹出的序列名窗口,点击OK即可。即可。表表8 格兰杰因果性检验结果格兰杰因果性检验结果 由表由表8知,知,LGDPt、LCt 和和LIt之间存在格兰之间存在格兰杰因果性,故杰因果性,故LGDPt、LCt和和LIt均可做为均可做为VAR模模型的应变量。型的应变量。建立建立VARVAR模型模型 在工作文件窗口,在主菜单栏选在工作文件窗口,在主菜单栏选Quicp/Est
23、imate VAR,OK,弹出,弹出VAR定义窗口,定义窗口,见图见图5。图图5 VAR模型定义窗口模型定义窗口 在在VAR模型定义窗口中填毕(选择包括截距)模型定义窗口中填毕(选择包括截距)有关内容后,点击有关内容后,点击OK。输出结果包含三部分,分。输出结果包含三部分,分别示于表别示于表9、表、表10和表和表11。表表9 VAR模型参数估计结果模型参数估计结果表表10 VAR模型各方程检验结果模型各方程检验结果表表11 VAR模型整体检验结果模型整体检验结果 将表将表9的的VAR(2)模型改写成矩阵形式模型改写成矩阵形式:表表9 中列表示方程参数估计结果和参数的标中列表示方程参数估计结果和
24、参数的标准差准差t检验值。可以发现许多检验值。可以发现许多t检验值不显著,一检验值不显著,一般不进行剔除,般不进行剔除,VAR 理论不看重个别检验结果,理论不看重个别检验结果,而是注重模型的整体效果,不分析各子方程的意而是注重模型的整体效果,不分析各子方程的意义。义。表表10 每一列表示各子方程的检验结果。每一列表示各子方程的检验结果。表表11是对是对VAR模型整体效果的检验。其中包括模型整体效果的检验。其中包括残差的协方差、对数似然函数和残差的协方差、对数似然函数和AIC 与与 SC。建立了建立了VAR模型之后,在模型窗口工具栏点模型之后,在模型窗口工具栏点击击Name,将,将VAR模型保存
25、,以便进行脉冲响应等模型保存,以便进行脉冲响应等特殊分析。特殊分析。注意:注意:平稳变量建立的平稳变量建立的VAR模型是平稳的,而模型是平稳的,而建立平稳建立平稳VAR模型的变量不一定是平稳变量。模型的变量不一定是平稳变量。利用利用VAR(P)VAR(P)模型进行预测模型进行预测 VAR模型是非结构模型,故不能用模型进模型是非结构模型,故不能用模型进行结构分析。预测是行结构分析。预测是VAR模型的应用之一,由模型的应用之一,由于我们所建立的于我们所建立的VAR(2)模型通过了全部检验。模型通过了全部检验。故可用其进行预测。故可用其进行预测。若对建立的若对建立的VAR(2)模型进行预测,)模型进
26、行预测,首先首先要扩大工作文件范围和样本区间,然后要扩大工作文件范围和样本区间,然后在模型在模型窗口窗口中选择中选择Procs/Mape Model,屏幕出现模型屏幕出现模型定义窗口,定义窗口,将其命名为将其命名为MODEL01,如图如图6。n 模型定义窗口中位于线性模型窗口第一行模型定义窗口中位于线性模型窗口第一行:assignall f表示将表示将VAR模型中各内生变量的预测值存入以模型中各内生变量的预测值存入以原序列名加后缀字符原序列名加后缀字符“f”生成的新序列(这里生成的新序列(这里演示的是拟合)。演示的是拟合)。预测预测 在工具栏中点击在工具栏中点击Solve,则线性模型出现在,则
27、线性模型出现在图图6中,模型预测窗口示于图中,模型预测窗口示于图7。图图6 线性模型窗口线性模型窗口 图图7 模型预测窗口模型预测窗口 图图8和图和图9分别是利用动态和静态方法计算出的分别是利用动态和静态方法计算出的样本期内实际值与拟合值的比较。样本期内实际值与拟合值的比较。由图看出,动由图看出,动态拟合结果只能反映序列的变化趋势,而无法对态拟合结果只能反映序列的变化趋势,而无法对短期波动进行刻画。所以,短期波动进行刻画。所以,VAR模型适用于短期模型适用于短期预测,预测精度高和长期规划预测。预测,预测精度高和长期规划预测。图图8 动态拟合结果动态拟合结果图图9静态拟合结果静态拟合结果2.3脉
28、冲响应函数与方差分解脉冲响应函数与方差分解 对于政策时滞的实证研究主要有如下对于政策时滞的实证研究主要有如下4种方法:种方法:(1)对对时时序序变变量量数数据据或或图图、表表进进行行直直观观分分析析,方法简单,但主观性强,精方法简单,但主观性强,精 度低;度低;(2)时时序序时时差差相相关关系系数数法法,只只能能给给出出滞滞后后期期,不能给出持续的时间、影响程度和相互作用。不能给出持续的时间、影响程度和相互作用。(3)脉冲响应函数(冲击)法;)脉冲响应函数(冲击)法;(4)方差分解法。)方差分解法。后两种方法是目前国外常用的方法,近年国内后两种方法是目前国外常用的方法,近年国内学者开始采用进行
29、政策时滞分析。这里重点介绍后学者开始采用进行政策时滞分析。这里重点介绍后两种方法。两种方法。时时差差相相关关系系数数(Cross Correlation)分分析析法法是是利利用用相相关关系系数数检检验验经经济济时时序序变变量量间间滞滞后后关关系系的的一一种种常常用用方方法法。对对两两个个时时序序变变量量,选选择择一一个个作作为为基基准准变变量量,计计算算与与另另一一变变量量在在时时间间上上错错开开(滞滞后后)时时的的相相关关系系数数。以以相相关关系系数数的的大小判断两变量间的时差大小判断两变量间的时差(仅能判断时差仅能判断时差)关系。关系。两时序变量间的时差相关系数两时序变量间的时差相关系数
30、为为:1.1.时差相关系数时差相关系数(5)式中,式中,为两时序变量为两时序变量xt、yt 在时差(滞后期)在时差(滞后期)为为p时的相关系数。时的相关系数。由(由(5)式知,)式知,yt 为基准变量(即为基准变量(即t为基)为基)为为xt滞后滞后p期序列的均值;期序列的均值;为为yt的均值;的均值;n为样本容量;为样本容量;p为滞后期(时差),取值为整数。若取正为滞后期(时差),取值为整数。若取正整数,则表示整数,则表示xt滞后于滞后于yt;若取负整数,则表示若取负整数,则表示xt超前于超前于yt;若取零,则表示两变量一致。若取零,则表示两变量一致。此法计算简单,容易理解。实际计算时,通常计
31、此法计算简单,容易理解。实际计算时,通常计算基准变量(如算基准变量(如GDP、物价水平等)的增长率与政、物价水平等)的增长率与政策变量的增长率间的时差相关系数。但反映的是政策变量的增长率间的时差相关系数。但反映的是政策变量变化后引起基准变量变化的相关性,不能给策变量变化后引起基准变量变化的相关性,不能给出持续时间、影响程度和变化方向。严格讲时差相出持续时间、影响程度和变化方向。严格讲时差相关系数法给出的时滞仅是从政策变化到对经济系统关系数法给出的时滞仅是从政策变化到对经济系统产生影响的时间间隔。由于多数时序变量具有时间产生影响的时间间隔。由于多数时序变量具有时间趋势,可能有伪相关,使计算结果传
32、递错误信息,趋势,可能有伪相关,使计算结果传递错误信息,因此,通常进行平稳化处理。即对数化因此,通常进行平稳化处理。即对数化,差分差分,增长率。增长率。(最好对变量进行平稳性检验)。(最好对变量进行平稳性检验)。EViews命令为:在主窗口点击:命令为:在主窗口点击:Quicp/Group Statistics/Corss Correogram =序序列列名名窗窗口口,键键入入二二序序列列名名(只允许键入两个变量),(只允许键入两个变量),OK。在弹出的滞后窗口,默认在弹出的滞后窗口,默认12,OK。给出二时序变量的相关系数。然后进行比给出二时序变量的相关系数。然后进行比较,其中较,其中|最大
33、者对应的时差就是二序列间最大者对应的时差就是二序列间的时滞。的时滞。这这里里介介绍绍的的脉脉冲冲响响应应函函数数和和下下面面将将要要介介绍绍的的方方差差分解法,较时差相关系数法具有两个突出优点:分解法,较时差相关系数法具有两个突出优点:第第一一,可可将将所所考考虑虑的的全全部部变变量量纳纳入入一一个个系系统统,反反映映系系统统内内所所有有变变量量间间的的相相互互影影响响,给给出出的的是是系系统统内内全全部部信信息息相互作用结果。而时差相关系数法只能考虑两个变量。相互作用结果。而时差相关系数法只能考虑两个变量。第二第二,不仅能给出政策效果时滞,时滞区间,而且能不仅能给出政策效果时滞,时滞区间,而
34、且能给出影响的程度与方向,结果准确。而时差相关系数法给出影响的程度与方向,结果准确。而时差相关系数法只能给出时滞。只能给出时滞。(1 1)脉冲响应函数。)脉冲响应函数。对对VAR模型而言,单个参数估模型而言,单个参数估计值的经济解释是困难的,其应用除预测外,最重要的计值的经济解释是困难的,其应用除预测外,最重要的应用是脉冲响应分析和方差分解。脉冲响应函数描述应用是脉冲响应分析和方差分解。脉冲响应函数描述 2 2 脉冲响应函数脉冲响应函数的是一个内生变量对残差(的是一个内生变量对残差(称为称为 Innovation)冲击的反应冲击的反应(响应响应)。具体而言,它描述的是在随。具体而言,它描述的是
35、在随机误差项上施加一个标准差大小的冲击(来自机误差项上施加一个标准差大小的冲击(来自系统内部或外部)后对内生变量的当期值和未系统内部或外部)后对内生变量的当期值和未来值所产生的影响(动态影响)。这种分析方来值所产生的影响(动态影响)。这种分析方法称为脉冲响应函数(法称为脉冲响应函数(IRF:impulse-response function)。)。为浅显说明脉冲响应的基本原理,说明残差为浅显说明脉冲响应的基本原理,说明残差是如何将冲击(对新息是冲击,对内生变量是是如何将冲击(对新息是冲击,对内生变量是对冲击的响应)传递给内生变量的。以含两个对冲击的响应)传递给内生变量的。以含两个内生变量的内生
36、变量的VAR(2)模型为例予以说明。设两)模型为例予以说明。设两变量变量VAR(2)模型:)模型:式中,式中,M为货币供应量。为货币供应量。(6)若系统受某种扰动,使若系统受某种扰动,使 发生发生1个标准差的个标准差的变化(冲击),不仅使变化(冲击),不仅使 立即发生变化(响应)立即发生变化(响应),而且还会通过,而且还会通过 ,影响影响 的取值的取值,且会影响其后的且会影响其后的GDP和和M的取值(滞后响应)。的取值(滞后响应)。脉冲响应函数描述了系统内变量间的这种相互冲脉冲响应函数描述了系统内变量间的这种相互冲击与响应的轨迹,显示了任一扰动如何通过模型击与响应的轨迹,显示了任一扰动如何通过
37、模型(市场),冲击其它所有变量的链式反应的全过(市场),冲击其它所有变量的链式反应的全过程。同理,程。同理,也会引起类似地冲击链式反应。也会引起类似地冲击链式反应。下面通过式(下面通过式(6)具体说明新息是如何传递给内生变)具体说明新息是如何传递给内生变量的。量的。为简便起见,假定系统从为简便起见,假定系统从0期开始运行,则期开始运行,则 给定新息(扰动)给定新息(扰动),且其后均为,且其后均为0,即,即 ,称此为,称此为0期扰动,对期扰动,对的冲击,亦即的冲击,亦即 与与 的响应。的响应。当当 t=0时:时:;将其代入;将其代入(6)。当当 t=1时:时:;将其代入;将其代入(6)。当当 t
38、=2时:时:;将其代入;将其代入(6)。以此类推,设求得响应的结果为以此类推,设求得响应的结果为 ,称为由,称为由GDP的冲击引起的冲击引起的的GDP的响应函数。同样有的响应函数。同样有 ,称为由,称为由GDP的冲击引起的冲击引起的的M的响应函数。的响应函数。同理,将第同理,将第0期的脉冲改为期的脉冲改为 ,即可求出即可求出M的冲击引起的冲击引起GDP与与M的响应函数。显的响应函数。显然以上的脉冲响应函数明显地捕捉到了冲击的效然以上的脉冲响应函数明显地捕捉到了冲击的效果。果。上述冲击思想可以推广到含上述冲击思想可以推广到含N个内生变量的个内生变量的VAR(p)模型。模型。对脉冲响应函数处理的困
39、难在于对脉冲响应函数处理的困难在于各残差间各残差间不是完全非相关的。不是完全非相关的。当残差间相关时,当残差间相关时,它们的它们的共同部分不易识别,处理这一问题的不严格做共同部分不易识别,处理这一问题的不严格做法是法是将共同部分归于将共同部分归于VAR系统第系统第1个方程的扰个方程的扰动项。动项。对有对有3个内生变量的个内生变量的VAR模型每个内生变模型每个内生变量都对应着量都对应着3个脉冲响应函数,故一个含个脉冲响应函数,故一个含3个内个内生变量的生变量的VAR将有将有9个脉冲响应函数。个脉冲响应函数。23VAR脉冲方差分解协整 在在VAR模型窗口的工具栏点击模型窗口的工具栏点击Impuls
40、e就就会弹出脉冲响应对话窗口会弹出脉冲响应对话窗口,见图见图10 。图图 10 脉冲响应对话窗口脉冲响应对话窗口 图图10中的左侧有中的左侧有4个空白区需要填写,依个空白区需要填写,依次填写冲击变量(应变量)名;欲计算响应函次填写冲击变量(应变量)名;欲计算响应函数的变量名;响应变量出现的顺序。前两处输数的变量名;响应变量出现的顺序。前两处输入的变量不同只会改变显示结果的顺序,不会入的变量不同只会改变显示结果的顺序,不会对结果产生影响,而第对结果产生影响,而第3个空白区变量顺序不个空白区变量顺序不同,将对结果产生影响。最下部用户填响应函同,将对结果产生影响。最下部用户填响应函数的追踪期数,缺省
41、是数的追踪期数,缺省是10。对话框右側由两部分构成。右上方是结果对话框右側由两部分构成。右上方是结果的显示方式:的显示方式:表:表示响应函数的系数值(括号内是标准表:表示响应函数的系数值(括号内是标准差);绘制每个脉冲响应函数图;合成图,差);绘制每个脉冲响应函数图;合成图,将来自同一新息脉冲响应函数图合并显示。将来自同一新息脉冲响应函数图合并显示。右下方是关于计算脉冲响应函数标准误的选右下方是关于计算脉冲响应函数标准误的选项,包括不计算(项,包括不计算(None)、渐近解析法)、渐近解析法(Analytic)和蒙特卡洛法()和蒙特卡洛法(Mote Carlo)。)。定义完毕点击定义完毕点击O
42、K。图。图11是按图是按图10输入结果输入结果绘制的脉冲响应函数合成图。绘制的脉冲响应函数合成图。图图11 脉冲响应函数合成图脉冲响应函数合成图 图图11左上图是左上图是LGDP、LCT 和和 LIT分别对分别对LGDP一个标准差冲击的响应。一个标准差冲击的响应。右上图是右上图是LGDP、LCT 和和 LIT分别对分别对LCT一个标准差冲击的响应。一个标准差冲击的响应。下图是下图是LGDP、LCT 和和 LIT分别对分别对LIT一一个标准差冲击的响应。个标准差冲击的响应。图图11看出,滞后期为看出,滞后期为5期,稳定期为期,稳定期为7期。期。3.方差分解方差分解 VAR模型的应用,还可以采用方
43、差分解方法研究模型的应用,还可以采用方差分解方法研究模型的动态特征。脉冲响应函数描述的是模型的动态特征。脉冲响应函数描述的是VAR模型中模型中的每一个内生变量的冲击对自身与其它内生变量带来的每一个内生变量的冲击对自身与其它内生变量带来的影响,或脉冲响应函数是随着时间的推移,观察模的影响,或脉冲响应函数是随着时间的推移,观察模型中的各变量对于冲击的响应。而方差分解型中的各变量对于冲击的响应。而方差分解(variance decomposition)是进一步评价各内生变量对预测方差的是进一步评价各内生变量对预测方差的贡献度。贡献度。Sims于于1980年提出了方差分解方法,定量地年提出了方差分解方
44、法,定量地但是较为粗糙地计量了变量间的影响关系。但是较为粗糙地计量了变量间的影响关系。方差分解方差分解是分析预测残差的标准差由不同新息的冲击影响的比是分析预测残差的标准差由不同新息的冲击影响的比例,亦即对应内生变量对标准差的贡献比例。例,亦即对应内生变量对标准差的贡献比例。对所建立的对所建立的VAR(2)模型进行方差分解分析。模型进行方差分解分析。案例案例1 (八八)方差分解方差分解 对对VAR模型的方程顺序不变。对话框中模型的方程顺序不变。对话框中Periods后输入的数值代表预测期,例若取后输入的数值代表预测期,例若取15。其他项目。其他项目意义如前所述。表意义如前所述。表12和图和图13
45、分别是对内生变量分别是对内生变量LCT进行方差分解的表格和合成图输出结果。进行方差分解的表格和合成图输出结果。Eviews中方差分解操作使用脉冲响应函数定中方差分解操作使用脉冲响应函数定义对话框,如图义对话框,如图10,在右边选择方差分解,在右边选择方差分解(Variance decomposition)。对话框左上部分。对话框左上部分Innovations to处可以不填,因为方差分解必然涉处可以不填,因为方差分解必然涉及模型所有信息。若仅对序列及模型所有信息。若仅对序列LCT进行方差分解,进行方差分解,则在对话框左边则在对话框左边cause Responses by处输入处输入LCT序序列
46、名,方差分解定义对话框示于图列名,方差分解定义对话框示于图12。图图12 方差分解定义对话框方差分解定义对话框表表12 LCT方差分解方差分解图图13 LCT方差分解合方差分解合成图成图 表表12包括包括5列。第一列是预测期,第二列是列。第一列是预测期,第二列是变量变量LCT各期预测值的标准差(各期预测值的标准差(S.E),后三列),后三列均是百分数,分别是以均是百分数,分别是以LGDP、LCT和和LIT为应为应变量的方程新息对变量的方程新息对LCT各期预测标准差的贡献度,各期预测标准差的贡献度,每行结果相加是每行结果相加是100。由表由表12 和图和图13 知,知,S.E.一列数字表示预测一
47、列数字表示预测 1期、期、2期、期、15期时期时,LCT的预测标准差。的预测标准差。LnGDP、LnCT和和LnIT对应的数字列依次表示对应的数字列依次表示相应预测期时相应预测期时3个误差项变动对个误差项变动对LCT预测标准差预测标准差贡献的百分比。以贡献的百分比。以t=3为例,为例,LCT的预测标准差的预测标准差等于等于0.118950。其中。其中20.73%由由LGDP的残差的残差冲击所致冲击所致,75.59%由由LCT的残差冲击所致的残差冲击所致,3.68%由由LIT的残差冲击所致。加起来为的残差冲击所致。加起来为100%。自第。自第7期开始,方差分解结果基本稳定,这与响应冲击期开始,方
48、差分解结果基本稳定,这与响应冲击结果相一致。来自第结果相一致。来自第2个方程(自身)的新息占个方程(自身)的新息占LCT预测标准误的预测标准误的69%,自身影响最重要。另外,自身影响最重要。另外,第,第3个方程新息对于内生变量个方程新息对于内生变量LCT也较重要,也较重要,对其预测误差的贡献度达对其预测误差的贡献度达23%。注意注意:用于脉冲响应和方差分解的:用于脉冲响应和方差分解的VAR 模型,模型,最好使用季度或月度数据;最好使用季度或月度数据;53 Jonhansen(1995)协整检验是基于)协整检验是基于VAR模型模型的一种检验方法,但也可直接用于多变量间的协整的一种检验方法,但也可
49、直接用于多变量间的协整检验。检验。1.Johanson协整似然比(协整似然比(LR)检验)检验 H0:有:有 0个协整关系个协整关系;H1:有:有M个协整关系。个协整关系。检验迹统计量:检验迹统计量:式中,式中,M为协整向量的个数;为协整向量的个数;是是 按大小排列的按大小排列的第第i个特征值;个特征值;n 样本容量。样本容量。2.4约翰森(约翰森(Jonhansen)协整检验)协整检验54 Johanson检验不是一次能完成的独立检验,检验不是一次能完成的独立检验,而是一种针对不同取值的连续检验过程。而是一种针对不同取值的连续检验过程。EViews从检验不存在协整关系的零假设开始,其后是最从
50、检验不存在协整关系的零假设开始,其后是最多一个协整关系,直到最多多一个协整关系,直到最多N-1个协整关系,共需个协整关系,共需进行进行N次检验。次检验。约翰森协整检验与约翰森协整检验与EG协整检验的比较协整检验的比较 (1)约翰森协整检验不必划分内生、外生变)约翰森协整检验不必划分内生、外生变量,而基于单一方程的量,而基于单一方程的EG协整检验则须进行内生、协整检验则须进行内生、外生变量的划分;外生变量的划分;(2)约翰森协整检验可给出全部协整关系,)约翰森协整检验可给出全部协整关系,而而EG则不能;则不能;(3)约翰森协整检验的功效更稳定。)约翰森协整检验的功效更稳定。故约翰故约翰森协整检验