化学工程与工艺专业英语第二册翻译.docx

上传人:asd****56 文档编号:75783878 上传时间:2023-03-05 格式:DOCX 页数:9 大小:38.05KB
返回 下载 相关 举报
化学工程与工艺专业英语第二册翻译.docx_第1页
第1页 / 共9页
化学工程与工艺专业英语第二册翻译.docx_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《化学工程与工艺专业英语第二册翻译.docx》由会员分享,可在线阅读,更多相关《化学工程与工艺专业英语第二册翻译.docx(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、Unit 6 Chlor-Alkali and Related Processes氯碱及其相关过程纵观历史,大众化学品工业在氯碱及其相关过程之上。该部分通常包括氯气、苛性苏打(氢氧化钠)无水碳酸钠(以各种形式存在的碳酸钠的衍生物),以及以石灰为基础的产品。自从无水碳酸钠和氢氧化钠的各种制备工艺发现以来,两者在作为碱为主要原料方面相互竞争。电解过程的特殊经济性意味着不管对氯气和氢氧化钠这两种不同类型的产品的相对需求量如何,你只有以固定的比例同时制备氯气和氢氧化钠。这引起了氢氧化钠的价格的摇摆不定,从而使得纯碱作为一种碱或多或少有利。氯气苛性苏打和纯碱的生产都取决于廉价易得的原料供应,前者的生产需

2、要廉价的海水和电力的供应,而纯碱的生产需要海水、石灰和大量的能耗。纯碱厂只有在其原料不必要长距离的运输时才能赢利。这些原料供应利用是影响化工企业位置分布的一个重要因素。1. 石灰为基础的产品一种关键(重要)原料是石灰石。石灰石主要是由CaCO3 组成,高质量的石灰石可直接用于下一步反应。石灰石通常在大型露天石矿中开采,许多采石矿也进行原料的一些处理。从石灰石得到两种重要的产物:生石灰(CaO)和熟石灰水,生石灰是由石灰石根据该反应是热分解(1200-1500)制备得到。CaCO3 CaO+ CO2一般的,石灰石经过粉碎加入倾斜旋转窑的较高端,在此发生热分解反应,生石灰在另一端回收。然而,通常生

3、石灰用于进一步反应而分离,而加入其它化合物,与生石灰在窑的较低口处生成最低产品。例如,加入铝矿、铁矿和沙石可生成硅酸盐水泥。纯碱的生产,通常要向生石灰加入焦炭,焦炭燃烧生成纯碱所需的CO2,熟石灰由生石灰和水的反应制造,较生石灰更加方便。大约40%的石灰工业的产品用于钢铁制造业。在钢铁制造业中,纯碱用来与铁矿石中难溶解的硅酸盐反应,生成流态矿渣,矿渣漂浮于表面上,很容易从液态金属中分离,叫少量但重要的石灰工业的产品用于化学品的制造,污染控制和水处理。从石灰石得到的最重要的化学茶品是纯碱。2. 纯碱索尔维工艺,该工艺发现于1965 年由ES 优化:工艺是以当含氮的盐溶液经来自于石灰窑中焦炭燃烧产

4、物CO2 碳酸盐反应时,NaHCO3 沉淀析出为基础。NaHCO3 经过滤、干燥、煅烧生成CaCO3。过滤后NH4Cl溶液和熟石灰反应后(溶液体呈碱性)。蒸馏出NH3 在该过程中循环利用,生成物CaCl2 是废弃物或副产物。对于某一简单的基本产物来说,索尔维法看起来十分复杂。该反应的基本原理是,以NaCl2 和CaCO3为原料生成产物CaCl2 和Na2CO3.然而发生于原料和产物之间的反应并不明显,需要利用NH3 和Ca(OH)2作为中间化合物。该过程的基本原理为:利用准确的控制组分(尤其是NH3 和NaCl)的浓度,NaHCO3 能够从含NaCl、CO2 和NH3 的溶液里沉淀析出。该过程

5、的关键是控制溶液的酸碱强度和结晶的速度,该工艺的基本路线如下,NH3 气于氨气吸收器中吸收于事先经纯化的海水中,纯化的海水以减小Ca+、Mg+离子的量。(Ca+、Mg+在生产过程中易产生沉淀而阻塞管道)。含NaCl 和NH4HCO3 的溶液经吸收了CO2 的吸收塔(CO2 气体量塔底向上流) 开始时形成(NH4)2CO3 然后再生成NH4HCO3。在工厂的下面步骤中,Nacl 和NH4HCO3 经复分解反应生成NaHCO3(以沉淀形式形成)和NH4Cl。过滤将固体NaHCO3 从溶液中分离。将NaHCO3 送至旋转干燥器,在该干燥器中,NaHCO3 失去水和CO2后生成疏松的晶体块(即轻质纯碱

6、)它的主要成分为Na2CO3 蓬松的晶体块很轻,是因为NaHCO3 失去CO2后,留下很多空隙,而保留原来的晶体形状。通常要得到密度更大的物质很方便,加入水(水能引起咦密度较大的形式重结晶)进一步干燥即可实现。值得争议的是,上述的化学知识是否为该过程的很好的描述,但这些只是肯定有助于理解过程。想要对此过程有详细的理解,必须要熟悉该组分体系中关于溶度积的很多知识。需要知道的重要知识是,该体系是复杂体系,为了使该过程高效操作,需要对该过程每部分小心控制。该过程的一个缺点是:产生的CaCl2 的量很大,其产生量比所需量大得多。因此,大部分CaCl2 只是简单的倒掉(CaCl2 毒性不大),如果能要该

7、过程中的有的进料加以利用,那么该过程是有优势,例如,从该氯化物可产生HCl。纯碱的用途,有50%的纯碱销往玻璃制造业,因为穿件是玻璃制造过程中的主要原料。因此纯碱工业的财富与玻璃需求量息息相关。纯碱作为一种碱在许多化学过程中与NaOH 存在直接竞争。Na2SO3 是由纯碱和SiO2 在1200-1400反应衍生而来的另一类化学物质。硅酸是具有大表面积细小颗粒的Na2SO3,可用于催化剂、色谱之中, 洗涤剂和肥皂中作为部分磷酸盐的替代品。3. 生成Cl2/NaOH 的电解过程简介,在化学工业法杖是的各个时期,Cl2 和NaOH 两者的需求量均很大,但是不幸的是,对于电化学工厂的操作人员来说,两者

8、的需求量必总是相同。Cl2 可作为漂白粉或作为漂白粉的生产原料,水供应的消毒剂,以及作为塑料和溶解剂知道的原料。苛性钠用于生产纯碱、肥皂和纺织品,以及在多种化学过程中作为一种十分重要的原料。所有的电解有着共同之处,盐的电解生成Cl2 和NaOH。大多数生产过程是电解(盐的)水溶液,但是有些重要的工厂,电解熔融盐生成Cl2 和液态钠。这些电解熔融盐的过程用用于重要液态Na 的工业。虽然石油添加剂厂家多种多样,设会出现液态钠的其他用途,但是他的主要是用于生产四烷基铅石油添加剂。实质上用于水溶液电解过程有三种不同的电解槽:水银槽、隔板槽和膜电解槽。膜电解槽只是用于此案在化工厂中新的生产过程,但是还存

9、在着大量的旧生产过程,尽管说阴曹涉及到对环境的影响,但是许多生产厂家上位法此案膜片电解槽代替水印电解槽的经济性。所有的电解反应都是以电子作为化学反应的试剂的观点为基础。设水电解过程的基本反应可写成下式:阳极2Cl 2e- Cl2阴极2H2O + 2e H2 + 2OH总反应为2Na+ + 2Cl + 2H2O NaOH + Cl2 + H2该反应的自由能为正,因此,需要电驱使进行。像其他许多化学品工艺一样,尽管该反应看起来似乎极其简单,但是有一些方面很复杂。首先,该反应的产物必须分开,如果H2 和Cl2 允许混合在一起,它们会剧烈反应。H2 和Cl2 反应生成HOCl 和氯化物(两者均会浪费产

10、物、生成副产物)。接着,HOCl 和次氯酸盐反应生成氯酸盐(ClO3-)、质子和更多的氯化物。OH 在阳极区反应生成能污染Cl2 的O2。所有的这些反应可降低效率和(或)引起分解困难或污染问题。因此,在产物销售之前,有必要对这些反应清理。理解各种用于电解过程的关键是各种类型的过程分离反应产物的方式。尽管不同的制造商所用的电解槽在细节方面有着多种改变,但是用于盐水的电解过程的电解槽基本可分为以上三类。4、Cl2 和NaOH 的用途NaOH 的用途之多,以致很难将它们方便地进行分类。最大的用途之一是用于造纸,造纸业中木材的处理需要强碱。有些国家造纸业中NaOH 的消耗占其产量的20%,另外的20%

11、用于无机化学品(如,次氯酸钠、漂白粉和消毒剂)的生产。各种有机合成约消耗另外的15%,氧化铝和肥皂的生产需要少量的NaOH。Cl2 广泛用于其它各种产品的生产。在全世界范围内大约有1/4 的Cl2 用于生产氯乙烯(生产PVC 的单体)。1/4 至1/2 的Cl2 用于水的纯化。尽管因为关于消耗臭氧层物质的蒙特利议定书多种溶剂正在被逐步淘汰,但是仍有高达20%的氯气用于溶剂的生产(如甲基氯仿、三氯乙烯等)。全世界范围内,大约10%的Cl2 用于无机含氯的化合物的生产。尽管Cl2 用于漂白木材浆是来自环境压力的另一种途径,但是在一些国家Cl2 的十分重要的用途是用于木材浆的漂白。Unit 7 Am

12、monia, Nitric Acid and Urea氯、硝酸和尿素虽然N2 占我们呼吸的空气3/4 以上,但是氯气不容易用于进一步化学应用。对化学工业来说,N2 的生成有用化学品的生物转化反应难以实现,因为所有的工业技术人员的努力(或尝试)还没有找到该过程的简单其他方法。在常压和室温条件下,豆类植物能从空气中吸入N2 将之转化为NH3 以及含NH4-的产物。尽管(化学工艺师)花了一百年的精力,要实现上述转化,化学工业仍然需要高温和上百个大气压的压力。直到Harber 过程的发明,所有的含N 化学品都来自于有生物活性的矿物资源。基本上,所生产的化学品中所有的N(元素)都来自于Harber 法得

13、来的NH3。NH3 的生产之大,(尽管因为氨分子较轻,生产的其它产品的量更大,但其生产的NH3 的分子数要多于其他任何化合物),以及该过程的能源是如此的密集,以致于据估计,在二十世纪八十年代NH3 的生产就消耗全世界能源供应的3%。1、Harber 法合成NH3引言所有的生产NH3 的方法基本都是以Harber 法为基础,稍稍加以改变,该过程是由Harber、Nerst、Bosh 在德国于一战前开发出来的。N2 +3H22 NH3原则上,H2 和N2 间的反应很容易进行,该反应是放热反应,低温时平衡向右移动。所不幸的是,自然界赋予的N2 一个很强的叁键,这使得N2 分子不易受热力学因素的影响。

14、用科学术语来说,该分子是动力学惰性的。因此,要使该反应以一定的速度进行,需要相当苛刻的反应条件。实际上,“固定”(意思相互矛盾,“有用的反应活性”)氦的一种主要来源是闪电过程,闪电时生产大量的热量,把N2 和O2转化为N2O.在化工厂中要得到可观的NH3 的转化率,我们有必要使用催化剂。Harber 发现的催化剂(这使他获得诺贝尔奖)。是一些价廉的含铁的化合物。即使有该催化剂,这反应也需要很高压力(早期高达600 个大气压)和高温(大约4000C)因为四个气体分子转化为两个气体分子,所以增加压力使平衡向右(正方向)移动。然而,尽管高温使反应速度加快,但是高温使平衡向右移动,因此,所选的条件必须

15、要折中的能以合理的速率得到令人满意的转化率。条件的准确选择将取决于其他的经济因素和催化剂的具体情况。因为资本和能耗费用越发重要,当代的工厂已经趋向于比早期工厂在更低的压力和更高的温度(循环使用未转化的物料)下进行操作。氮的生物固定也使用了一种催化剂,该催化剂镶在较大的蛋白质分子中含有钼和铁,其详细结构直到1992 年才被化学家弄清楚,该催化剂的详细作用机理尚未清楚。原料。该过程需要以下几种原料(进料)的能源、N2 和H2。N2 很容易从空气中提取,但是H2 的来源很成问题。以前,H2 来源于通过煤的焦化反应,煤用作蒸汽重整的原料(主要是C 的来源),在蒸汽重整过程中,水蒸气与C 反应生成H2、

16、CO 和CO2。如今,以天然气(主要是甲烷)代替,尽管也使用来自石油的烃类物质。通常,制NH3 的工厂包括与NH3 生产相连接的H2 生产车间。在重整反应之前,含硫化合物必须从烃原料中除去,因为它们既能污染重整催化剂又能污染Harber催化剂。第一除硫步骤需要钴-铜催化剂。该催化剂能将所有的含硫化合物氢化生成H2S,H2S 能与ZnO反应(ZnS 和H2O)加以除去。主要的重整反应中,下列甲烷反应最为典型(甲烷的反应发生于约7500C.含镍催化剂上)CH4 + H2O CO + 3H2 (合成气)CH2 + 2H2O CO2 + 4H2其他烃经历类似反应。在次级重整器中,空气注入温度11000

17、C 的气流,除了发生其他反应外,空气中的O2 与H2 反应生成H2O,结果剩下不会污染的O2 的混合物,该混合物中O2 与H2 的比接近理想比3:1.然而,下一步反应必须通过下列转化反应将更多的CO 转变为H2 和CO2 。CO+ H2O CO2 + H2为使其尽可能完全的转化,此反应应该在较低温度下以两步进行(一步是在4000C 用铁为催化剂,另一步是在2000C 下用催化剂)。下一步中,CO2 必须从气体混合物中除去。除去CO2 可以用该酸性气体与碱性溶液(如KOH 和(或)单乙醇胺或二乙醇胺反应得以实现。这一步中,任然存在CO(污染Harbor 催化剂)对H2-N2 混合物造成很大污染,

18、需要用另一步去将CO 得量降低至PPM 级,这一步称为甲烷化反应,涉及到CO 和H2 反应生成甲烷(即一些重整反应的逆反应),该反应大约在325操作,用一种Ni 催化剂。合成气混合物准备用于Harbor 反应NH3 的生产各种不同氨厂的共同特征是合成经过加热,压缩,递往含成催化剂的反应器中,该基本反应方程式很简单:N2 + 3H22NH3该工业要实现的事:反应速度和反应产率的结合要令人满意, 不同的时期和不同的经济环境下谋求不同的折中方案,早期的制氨厂热衷于高压反应(其目的是在单程反应器中提高产率)但是当今大多数氨厂采用在较低的压力,很低的单程转化率,同时为节能而选择较低温度。为了确保反应器中

19、的转化率最大,通常在当反应达到平衡时,冷却合成气,使用热交换器或者在反应器的合适位置注入冷却氨,可实现合成气的冷却,这样做的作用是:在反应在尽可能接近平衡使其冷冻停止,因为此反应时放热反应(同时在较高温度下的平衡对氨的合成时不利的)所以为了得到好的收率,可以用这种方法,对热量进行很好的控制。哈伯法的产物由氨和合成气混合物(组成)因此,下一步需要将两者进行分离以能循环利用合成气,这可以压缩氨气得以实现(氨气的挥发度较其他组成小得多,大约在 40沸腾)氨的用途氨的主要用途不是用于进一步应用的含氨化合物的生产,而是用于生产肥料(如尿素,硝酸铵和磷酸铵)。肥料消耗了所生产氨的80%。例如:在1991

20、年美国消费的由氨得来的产物如下:其中大部分用作肥料(数量以百万吨计)尿素(4.2 百万吨)硫酸铵(二百二十万吨),硝酸铵(二百六十万吨),磷酸氢二铵(一千三百五十万吨)。氨的化学应用各式各样,尽管在制备纯碱的索维尔工艺中氨气得到回收而没出现于最终产品中,但是该过程需要使用氨气,很多过程直接吸收氨气,这些过程包括氰化物和芳香族含氮化合物(如吡啶)的生产。许多聚合物(如尼龙和丙烯酸类聚合物)中的氮可以追溯到氨,通常通过睛或氰(HCN)大多数的其他过称(工艺)以氨制的硝酸或硝酸盐作氮源,硝酸铵,用作含氮的肥料,它的另一种主要用途用作大众化炸药。2 硝酸硝酸的生产化学工业制造其他原料时,所用的大部分氮

21、元素不是以氨的形式直接利用,而是先将氨转化为硝酸,硝酸的生产大约消耗所生产的氨的20%氨生成硝酸的转化反应是一个三步过程:1 4NH3 + 5O2 4NO + 6H2O2 2NO +O2 2NO23 3NO2+H2O 2HNO3+NO第一个反应用铂(实际上是铂铑金属网)催化,该催化反应可以再实验室上用一根铂丝和浓氨水溶液观察到。初看起来,生成硝酸的总反应似乎很简单,所不幸的事,实际过程比化学家和工程师所想的要糟的多,因此,存在许多复杂的因素。工业上,第一反应于含铂铑金属网的反应器中,在900 度左右进行,温度由该反应产生的热量得以维持,在该温度下,一些重要的副反应也进行得很快,其一,氨和空气混

22、合物能被氧化生成氨气和水(如果反应器器壁的温度高,那么该反应趋向于在壁上进行,因此有必要特意将之冷却),其二,催化剂可促进第一反应的产物NO 的分解,生成氨气和氧气,因此重要的是尽可能快地将产物移出反应器,尽管这一做法与下列事实相矛盾:为使原料和催化剂得以反应,有必要保持原料与催化剂接触时间足够长。其三:反应产物NO 与氨反应生成氨气和水,因此重要的事,不让过多的暗器流过催化剂床层,否则,原料不可回收而浪费。利用精心设计的反应器,控制温度和通过反应器的流速可以实现这些矛盾要素的控制。通常该反应的实际接触时间约310-4 秒第二步和第三步反应复杂性较小,但是,两者的反应速度很慢,尚未发现高效的催

23、化剂,一般的,令氨气和NO 的混合物流经一系列的冷凝压缩器,在这些压缩器中发生部分氧化反应,低温对该反应有利。当混合气体流经大型泡罩吸收塔时,NO2 从该混合气体得以吸收,塔底为55% 60%硝酸因为硝酸在68%时与水形成共沸物,所以不能用蒸馏法加工以浓缩,硝酸厂通常利用含98%的硫酸塔在其塔顶去生成90%硝酸,如有必要,利用硝酸镁对之进一步脱水可得到接近100%的硝酸硝酸的用途在所生产硝酸大约有65%与氨反应制造硝酸铵,80%的硝酸铵用于肥料,其余的用作炸药。硝酸的另一个主要作用是用于有机硝化反应,几乎所有的炸药最终都是来自硝酸(大部分为硝酸酯,如硝化甘油或为硝化芳香族化合物如三硝基甲苯)在

24、合成重要的硝基或氨基芳香族中间体时(如苯胺)时,第一步为利用和硝酸的硝化反应。苯胺的合成,第一步为芳香族化合物的硝化,然而将硝基还原为胺基。许多重要的染料和药物最终都是通过该反应得到,尽它们的需求量很小,聚氨酯塑料的制备时以芳香族异氰酸酯为基础,而芳香族异氰酸酯最终来自于硝化甲苯和苯,该用途大约要消耗5% 10%的硝酸产量3 尿素尿素的生产,另一种重要的直接由氨大量生产的产物为尿素,大约有20%的氨用于尿素的生产,尿素是通过CO2 和NH3 的高压反应合成(一般为200 400 个atm 和180 210)该反应可分为两步:1 CO2+2NH3-NH2CO-2NH+42 NH2CO-2NH+4

25、-NH2CONH2+H2O该高压反应可实现将60%的CO2 转化为氨基甲酸酯,生成的混合物输入低压分解器使之转化为尿素,未反应的物料被输回该工艺中高压步骤的开始阶段,这样做可以大大提高车间的总效率,第二阶段所得的溶液可直接用作液态含氮肥料或经浓缩生产纯度为99%固体尿素尿素的用途尿素的含氮量高使之成为另一种有利氮肥,尿素占氮肥市场的绝大部分,其他的用途也很重要,但是只占所生产品尿素的10%左右。尿素的最大的另一用途是用于树脂(甲醛二聚氰酰胺和尿素甲醛)例如这些树脂用作胶合板粘结剂和弗莱卡的表面。Unit 10 What Is Chemical Engineering?什么是化学工程学广义来讲,

26、工程学可以定义为对某种工业所用技术和设备的科学表达。例如,机械工程学涉及的是制造机器的工业所用技术和设备。它优先讨论的是机械力,这种作用力可以改变所加工对象的外表或物理性质而不改变其化学性质。化学工程学包括原材料的化学过程,以更为复杂的化学和物理化学现象为基础。因此,化学工程学是工程学的一个分支,它涉及工业化化学过程中工厂和机器的设计、制造、和操作的研究。前述化学工程学都是以化学科学为基础的,如物理化学,化学热力学和化学动力学。然而这样做的时候,它并不是仅仅简单地照搬结论,而是要把这些知识运用于大批量生产的化学加工过程。把化学工程学与纯化学区分开来的首要目的是“找到最经济的生产路线并设计商业化

27、的设备和辅助设备尽可能地适应它。”因此如果没有与经济学,物理学,数学,控制论,应用机械以及其它技术的联系就不能想象化学工程会是什么样的。早期的化学工程学以描述性为主。许多早期的有关化学工程的教科书和手册都是那个时候已知的商品生产过程的百科全书。科学和工业的发展使化学品的制造数量迅速增加。举例来说,今天石油已经成为八万多种化学产品生产的原材料。一方面是化学加工工业扩张的要求,另一方面是化学和技术水平的发展为化学工艺建立理论基础提供了可能。随着化学加工工业的发展,新的数据,新的关系和新的综论不断添加到化学工程学的目录中。然后又从主干上分出许多的分支,如工艺和工厂设计,自动化,化工工艺模拟和模型,等

28、等。1 简要的历史轮廓从历史上来说,化学工程学与化学加工工业密不可分。在早期,化学工程学随着早期化学产品交易的发展而出现,是应用化学的纯描述性的分支。在欧洲,基础化学产品的制造出现在15世纪。一些小的、专门的企业开始创立,生产酸、碱、盐、药物中间体和一些有机化合物。由于十九世纪英国的学院化学家强调纯化学的研究高于应用化学,他们的要成为工业化学家的学生也只是定性和定量分析者。在19世纪80年代以前,德国的化学公司也是这样。他们愿意聘请那些在大学里进行研究的人作顾问,这些人偶尔为制造的革新提供一些意见。然而到了80年代,工业家们开始认识到要把顾问们在实验室的准备和合成工作进行放大是一个与实验室研究

29、截然不同的活动。他们开始把这个放大的问题以及解决的方法交给“化学工程师”这可能是受到已经进入工厂的机械工程师的表现的启发。由于机械工程师熟悉所涉及的加工工艺,是维修日益复杂化的工业生产中的蒸气机和高压泵的最合适的人选。学院研究中头和手两分的现象逐渐消亡。单元操作。1881年英国曾经准备把化学工业的一个新的协会命名为“化学工程师协会”,这个建议遭到了拒绝。另一方面,由于受到来自工业界日益加重的压力,大学的课程开始体现出除了培养分析工作者还要培养化学工程师的要求。现在仅仅对现有工业过程进行描述已经不够了,需要对各种特殊工业进行工艺属性的分析。这就为引入热力学及动力学、溶液和相等物理化学新思想提供了

30、空间。在这个转变期,一位关键的人物是化学顾问George Davis,化学工业协会的首任秘书。1887年Davis那时是Manchester专科学校的一名讲师,做了一系列有关化学工程学的讲座。他把化学工程学定义为对“大规模化学生产中所应用的机器和工厂”的研究。这们课程包括了大规模工业化操作的工厂的各种类型,如干燥、破碎、蒸馏、发酵、蒸发和结晶。后来逐渐在别的地方而不仅仅在英国,而是国外,成为许多课程的雏形。英国直到1909年化学工程学才成为一门较为完善的课程,而在美国,MIT的Lewis Norton早在1888年就已率先开出了Davis型课程。1915年,Arthur D. little 在

31、一份MIT的计划书中,提出了“单元操作”这个概念,这几乎为二十世纪化学工程学的突出特点做了定性。Davis这一倡议的成功原因是很明显的:它避免了泄露特殊化学过程中受专利权或某个拥有者的保留权所保护的秘密。过去这种泄露已经严重限制了制造者对学院研究机构训练计划的支持。Davis把化学工业分解为“能独立进行研究的单个的工序”从而克服了这个困难。并且在大学或专科学校的工厂里用中试车间进行了试验。他采用了工业顾问公司的理念,经验传递从一个车间到另一个车间,从一个过程到另一个过程。这种方式不包含限于某个给定工厂的利润的私人的或特殊的知识。单元操作的概念使每一个化学制造过程都能分解为一系列的操作步骤,如研

32、末、干燥、烤干、电解等等。例如,学校对松节油制造的特殊性质的研究可以用蒸馏属性研究来代替。这是一个对许多其它工业制造也很普通的工艺过程。单元操作概念的定量形式大概出现在1920年,刚好是在第一次全球石油危机出现的时候。化学工程师能赋予单元操作定量特性的能力使得他们合理地设计了第一座现代炼油厂。石油工业第一次大量聘请化学工程师的繁荣时代开始了。在单元操作密集繁殖的时代,化学工程学另一些经典的分析手段也开始被引入或广泛发展。这包括过程中材料和能量平衡的研究以及多组分体系中基础热力学的研究。化学工程师在帮助美国及其盟国赢得第二次世界大战的胜利中起了关键的作用。他们发展了合成橡胶的方法以代替在战争初期

33、因日本的封锁而失去来源的天然橡胶。他们提供了制造原子弹所需要的铀-235,把制造过程从实验室研究一步放大到当时最大规模的工业化工厂,而他们在完善penicillin的生产工艺中也是功不可没,它挽救了几十万受伤士兵的生命。工程学运动。由于不满意对工艺设备运行的经验描述,化学工程师开始从更基础的角度再审视单元操作。发生在单元操作中的现象可以分解到分子运动水平。这些运动的定量机械模型被建立并用于分析已有的仪器设备。过程和放应器的数学模型也被建立并被应用于资金密集型的美国工业如石油化学工业。与工程学同时发展的是现在的化学工程课程设置的变化。也许与其它发展相比较,核心课程为化学工程师运用综合技能解决复杂

34、问题更加提供了信心。核心课程固定了一些基础科学为背景,包括数学,物理,和化学。这些背景对于从事以化学工程为中心的课题的艰苦研究是必须的,包括:Multicomponent thermodynamics and kinetics,Transport phenomena,Unit operations,Reaction engineering,Process design and control, andPlant design and systems engineering.多组分体系热力学及动力学传输现象单元操作反应工程过程设计和控制工厂设计和系统工程这种训练使化学工程师们成为了在许多学科领域

35、做出了突出贡献的人,包括在催化学、胶体科学和技术、燃烧、电化学工程、以及聚合物科学和技术方面。1. Basic Trends In Chemical Engineering2. 化学工程学的基本发展趋势 未来几年里,科学的进步,技术的竞争以及经济的驱动力将为化学工程是什么以及化学工程能做什么打造一个新的模型。化学工程学的焦点一直是改变物体的物理状态或化学性质的工业过程。化学工程师致力于这些过程的合成、设计、测试放大、操作、控制和优选。他们从事于解决的这些问题,传统的规模水平和复杂程度可称之为中等的,这种规模的例子包括有单个过程(单元操作)所使用的反应器和设备以及制造厂里单元操作的组合,未来的研

36、究将在规模上逐渐进行补充。除了中等规模,还有微型的以及更为复杂的系统-巨型的规模。未来的化学工程师将比任何其他分支的工程师在更为宽广的规模范围紧密协作。例如,有些人可能从事于了解大范围的环境与中等规模的燃烧系统以及微型的分子水平的反应和传递之间的关系。另一些人则从事了解合成的飞机的的性能与机翼所用化学反应器及反应器的设计和对此有影响的复杂流体动力学的研究工作。因此,未来的化学工程师们要准备好解决从微型的到巨型的规模范围内出现的问题。他们要用来自其它学科的新的工具和理念来研究和实践:分子生物学,化学,固体物理学,材料学和电子工程学。他们还将越来越多地使用计算机、人工智能以及专家系统来解决问题,进

37、行产品和过程设计,生产制造。在这个学科中还有两个重要的发展是我们前面没有提到的:化学工程师将越来越多地涉及到对过程设计进行补充的产品设计中。因为产品所表现出来的性能将逐渐与它被加工的途径挂钩。传统概念上产品设计与过程设计之间的区别将变得模糊,不再那么明显。在已有的和新兴的工业中将出现一个特殊的设计竞争,那就是生产有专利权的、有特点的产品以适应严格的性能指标。这些产品的特征是服从快速革新的需要,因而他们将在市场上很快地被更新的产品所取代。化学工程师将经常性地介入到多学科领域的研究工程。化学工程师参与跨学科研究与化学科学、特种工业进行合作具有悠久的历史。随着工程学与分子科学最紧密地联系在一起,化学工程学的地位也越来越崇高。因为如化学、分子生物学、生物医学以及固体物理这样的科学都是为明天的科学技术提供种子,作为“界面科学”,化学工程学具有光明的未来,它将在多学科领域中搭建科学和工程学之间的桥梁,而在这里将出现新的工业技术。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 标准材料 > 机械标准

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁