简单线性规划课件.ppt

上传人:asd****56 文档编号:75662684 上传时间:2023-03-04 格式:PPT 页数:19 大小:337KB
返回 下载 相关 举报
简单线性规划课件.ppt_第1页
第1页 / 共19页
简单线性规划课件.ppt_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《简单线性规划课件.ppt》由会员分享,可在线阅读,更多相关《简单线性规划课件.ppt(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、xyo通城二中通城二中 徐四强徐四强在同一坐标系上作出下列直线在同一坐标系上作出下列直线:2x+y=0;2x+y=1;2x+y=-3;2x+y=4;2x+y=7xYo问题思考1直线方程直线方程形如:形如:y=kx+b,上述方程上述方程中中k,b分别分别是什么?是什么?作出下列不等式组所表示的平面区域作出下列不等式组所表示的平面区域问题思考23x+5y25x-4y-3x1在该平面区域上 问题 1 1:有无最大(小)值?问题:有无最大(小)值?xyox-4y=-33x+5y=25x=1问题:2 2+有无最大(小)值?CAB二二.提出问题提出问题把上面两个问题综合起来把上面两个问题综合起来:设设z=

2、2x+y,求满足求满足时时,求求z的最大值和最小值的最大值和最小值.55x=1x-4y+3=03x+5y-25=01ABCC:(1,4.4)A:(5,2)B:(1,1)Oxy直线直线L L越往右平移越往右平移,t,t随之增大随之增大.以经过点以经过点A(5,2)A(5,2)的的直线所对应的直线所对应的t t值值最大最大;经过点经过点B(1,1)B(1,1)的直线所对的直线所对应的应的t t值最小值最小.z=2x+y设设z=2x+y,求满足求满足时时,求求z的最大值和最小值的最大值和最小值.线性目线性目标函数标函数线性约线性约束条件束条件线性规线性规划问题划问题任何一个满足任何一个满足不等式组的

3、不等式组的(x,yx,y)可行解可行解可行域可行域所有的所有的最优解最优解有关概念有关概念由由x,y 的不等式的不等式(或方程或方程)组成的不等式组称为组成的不等式组称为x,y 的的约束条件约束条件。关于。关于x,y 的一次不等式或方程的一次不等式或方程组成的不等式组称为组成的不等式组称为x,y 的的线性约束条件线性约束条件。欲达。欲达到最大值或最小值所涉及的变量到最大值或最小值所涉及的变量x,y 的解析式称的解析式称为为目标函数目标函数。关于。关于x,y 的一次目标函数称为的一次目标函数称为线性线性目标函数目标函数。求线性目标函数在线性约束条件下的。求线性目标函数在线性约束条件下的最大值或最

4、小值问题称为最大值或最小值问题称为线性规划问题线性规划问题。满足线。满足线性约束条件的解(性约束条件的解(x,y)称为)称为可行解可行解。所有可行。所有可行解组成的集合称为解组成的集合称为可行域可行域。使目标函数取得最大。使目标函数取得最大值或最小值的可行解称为值或最小值的可行解称为最优解最优解。B Cxyox4y=33x+5y=25x=1 例例1:设:设z2xy,式中变量式中变量x、y满足下列条件满足下列条件 求的最大值和最小值。求的最大值和最小值。3x+5y25x 4y3x1解:作出可行域如图解:作出可行域如图:当当0时,设直线时,设直线 l l0 0:2xy0 当当l l0 0经过可行域

5、上点经过可行域上点A时,时,z 最小,即最小,即最大。最大。当当l l0 0经过可行域上点经过可行域上点C时,时,最大,即最大,即最小。最小。由由 得得A点坐标点坐标_;x4y3 3x5y25由由 得得C点坐标点坐标_;x=1 3x5y25 zmax2528 zmin214.4 2.4(5,2)(5,2)(1,4.4)(1,4.4)平移平移l l0 0,平移平移l l0 0,(5,2)2xy0(1,4.4)(5,2)(1,4.4)典例讲评解线性规划问题的步骤:解线性规划问题的步骤:2 2、在线性目标函数所表示的一组平行线在线性目标函数所表示的一组平行线 中,用平移的方法找出与可行域有公中,用平

6、移的方法找出与可行域有公 共点且纵截距最大或最小的直线;共点且纵截距最大或最小的直线;3 3、通过解方程组求出最优解;通过解方程组求出最优解;4 4、作出答案。作出答案。1 1、画出线性约束条件所表示的可行域;画出线性约束条件所表示的可行域;画画移移求求答答问题问题1:某工厂用某工厂用A,B两种配件生产甲两种配件生产甲,乙两种产品乙两种产品,每生产一件甲种产品使用每生产一件甲种产品使用4个个A配件耗时配件耗时1h,每生产一件乙种产品使用每生产一件乙种产品使用4个个B配件耗时配件耗时2h,该厂每天最多可从配件厂获得该厂每天最多可从配件厂获得16个个A配件和配件和12个个B配件配件,按每天工作按每

7、天工作8小时小时计算计算,该厂所有该厂所有可能的日生产安排是什么可能的日生产安排是什么?若生产若生产1件甲种产品获利件甲种产品获利2万元万元,生产生产1 件乙件乙种产品获利种产品获利3万元万元,采用哪种生产安排利润最大采用哪种生产安排利润最大?32利润利润(万元万元)821所需时间所需时间1240B种配件种配件1604A种配件种配件资源限额资源限额 乙产品乙产品 (1件件)甲产品甲产品 (1件件)产品产品消消 耗耗 量量资资 源源把问题把问题1的有关数据列表表示如下的有关数据列表表示如下:0 xy4348将上面不等式组表示成平面上的区域将上面不等式组表示成平面上的区域,区域内区域内所有坐标为整

8、数的点所有坐标为整数的点P(x,y),安排生产任务安排生产任务x,y都是有意义的都是有意义的.设甲设甲,乙两种产品分别生产乙两种产品分别生产x,y件件,由己知条件可得由己知条件可得:问题:问题:求利润求利润2x+3y的最大值的最大值.若设利润为若设利润为z,则则z=2x+3y,这样上述问题转化为这样上述问题转化为:当当x,y在满足上述约束条件时在满足上述约束条件时,z的最大值为多少的最大值为多少?当点当点P(x,y)在可允许的取值范围变化在可允许的取值范围变化时时,0 xy4348M(4,2)问题:问题:求利润求利润z=2x+3y的最大值的最大值.三、当堂检测三、当堂检测已知已知求求z=2x+

9、y的最大值和最小值。的最大值和最小值。551Oxyy-x=0 x+y-1=01-1y+1=0y+1=0A(2,-1)B(-1,-1)2x+y=0知识小结1.线性规划问题的有关概念;2.用图解法解线性规划问题的一般步骤:(1)画:画出线性约束条件所表示的可行域;画:画出线性约束条件所表示的可行域;(2)移:在线性目标函数所表示的一组平行线中,用平移移:在线性目标函数所表示的一组平行线中,用平移 的方法找出与可行域有公共点且纵截距最大或最的方法找出与可行域有公共点且纵截距最大或最 小的直线;小的直线;(3)解解:通过解方程组求出最优解;:通过解方程组求出最优解;(4)答:作出答案。答:作出答案。谢谢!

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁