大数据十大经典算法SVM讲解PPT.ppt

上传人:可****阿 文档编号:75309812 上传时间:2023-03-03 格式:PPT 页数:29 大小:4MB
返回 下载 相关 举报
大数据十大经典算法SVM讲解PPT.ppt_第1页
第1页 / 共29页
大数据十大经典算法SVM讲解PPT.ppt_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《大数据十大经典算法SVM讲解PPT.ppt》由会员分享,可在线阅读,更多相关《大数据十大经典算法SVM讲解PPT.ppt(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、数据挖掘十大算法之数据挖掘十大算法之SVM小组成员:小组成员:杨凌云、徐小江、刘洁杨凌云、徐小江、刘洁刘家旺、吕佳艳、伍俊刘家旺、吕佳艳、伍俊2012013 3年年1010月月第一页,编辑于星期六:二十一点 四十九分。分类分类概念:概念:通过构造一个通过构造一个分类函数分类函数或或分类器分类器的方法,该方法能把数据库中的数据项映射的方法,该方法能把数据库中的数据项映射到给定类别中的某一个,从而可以用于预测未知数据。到给定类别中的某一个,从而可以用于预测未知数据。数据:数据:线性可分线性可分线性不可分线性不可分第二页,编辑于星期六:二十一点 四十九分。什么是什么是SVM全名:全名:Support

2、 Vector Machine(支持向量机)(支持向量机)支持向量支持向量:支持或支撑平面支持或支撑平面上把两类类别划分开来的超平面的上把两类类别划分开来的超平面的向量点向量点。机机:一个算法:一个算法基于统计学习理论的一种机器学习方法。简单的说,就是基于统计学习理论的一种机器学习方法。简单的说,就是将数据单元表示在多维空间中,然后对这个空间做划分的将数据单元表示在多维空间中,然后对这个空间做划分的算法。算法。第三页,编辑于星期六:二十一点 四十九分。SVM的特点的特点 SVM是建立在统计学习理论的是建立在统计学习理论的VC维理论和结构风险最维理论和结构风险最小原理基础上的,根据有限的样本信息

3、在模型的复杂性小原理基础上的,根据有限的样本信息在模型的复杂性之间寻求最佳折衷,以期获得最好的推广能力(或泛化之间寻求最佳折衷,以期获得最好的推广能力(或泛化能力)。能力)。核函数核函数 松弛变量松弛变量第四页,编辑于星期六:二十一点 四十九分。线性分类线性分类1第五页,编辑于星期六:二十一点 四十九分。线性分类线性分类1第六页,编辑于星期六:二十一点 四十九分。线性分类线性分类第七页,编辑于星期六:二十一点 四十九分。问题问题1.如何求得最优的如何求得最优的g(x)?2.最优的标准是什么?最优的标准是什么?3.g(x)=wx+b中的中的w和和b如何确定?如何确定?第八页,编辑于星期六:二十一

4、点 四十九分。最优标准:分类间隔最优标准:分类间隔数据表示数据表示Di=(xi,yi)分类间隔即两分类之间的距离分类间隔即两分类之间的距离越远越不易混淆越远越不易混淆定义定义i=(1/|w|)|g(xi)|,称为几何间隔,称为几何间隔|w|叫做向量叫做向量w的范数的范数,WX的的p范数为范数为|w|p=(X1p+X2p+.+Xnp)(1/p)第九页,编辑于星期六:二十一点 四十九分。最优标准:分类间隔最优标准:分类间隔H2与与H之间的间隔便是几何间隔。其中之间的间隔便是几何间隔。其中H1:+b=1;H2:+b=-1;几何间隔与样本的误分次数间的关系:误分次数几何间隔与样本的误分次数间的关系:误

5、分次数=(2R/)2,其中,其中是样本集合到分类是样本集合到分类面的间隔,面的间隔,R=max|xi|,i=1,.,n;所以问题转化成为求最大所以问题转化成为求最大值。值。第十页,编辑于星期六:二十一点 四十九分。因为因为w是超平面的法向量,所以是超平面的法向量,所以w实际实际上只由在上只由在H1平面上的样本点确定;平面上的样本点确定;在在H1上的向量则叫做上的向量则叫做Supported Vectors,因为它们,因为它们“撑撑”起了分界线。起了分界线。求最大的求最大的第十一页,编辑于星期六:二十一点 四十九分。于是问题便转化成了求于是问题便转化成了求很容易看出当很容易看出当|w|=0的时候

6、就得到了目标函数的最小值。反映在图中,就是的时候就得到了目标函数的最小值。反映在图中,就是H1与与H2两条直线两条直线间的距离无限大,所有样本点都进入了无法分类的灰色地带间的距离无限大,所有样本点都进入了无法分类的灰色地带解决方法:加一个约束条件解决方法:加一个约束条件求最大的求最大的第十二页,编辑于星期六:二十一点 四十九分。我们把所有样本点中间隔最小的那一点的间隔定为我们把所有样本点中间隔最小的那一点的间隔定为1,也就意味着集合中的其他点间隔都,也就意味着集合中的其他点间隔都不会小于不会小于1,于是不难得到有不等式:,于是不难得到有不等式:yi+b1(i=1,2,l)总成立。总成立。于是上

7、面的问题便转化成了求条件最优化问题:于是上面的问题便转化成了求条件最优化问题:约束条件约束条件第十三页,编辑于星期六:二十一点 四十九分。这是一个凸二次规划问题,所以一定会存在全局的最优解,但实际求解较为麻烦。这是一个凸二次规划问题,所以一定会存在全局的最优解,但实际求解较为麻烦。实际的做法:将不等式约束转化为等式约束,从而将问题转化为拉格朗日求极值的问题。实际的做法:将不等式约束转化为等式约束,从而将问题转化为拉格朗日求极值的问题。最优问题的求解最优问题的求解第十四页,编辑于星期六:二十一点 四十九分。引入拉格朗日对偶变量引入拉格朗日对偶变量a,w可表示为可表示为:w=a1y1x1+a2y2

8、x2+anynxn;利用利用Lagrange乘子法:乘子法:凸二次规划问题求解凸二次规划问题求解第十五页,编辑于星期六:二十一点 四十九分。代入代入 L(w,b,a):问题转换为:问题转换为:由凸二次规划的性质能保证这样最优的向量由凸二次规划的性质能保证这样最优的向量a是存在的是存在的凸二次规划问题求解凸二次规划问题求解第十六页,编辑于星期六:二十一点 四十九分。线性分类线性分类目标函数:目标函数:约束条件:约束条件:目标函数:目标函数:约束条件:约束条件:拉格朗日乘数法可将问题转化为对偶问题:拉格朗日乘数法可将问题转化为对偶问题:目标函数:目标函数:约束约束条件:条件:第十七页,编辑于星期六

9、:二十一点 四十九分。线性分类线性分类巧妙之处:原问题巧妙之处:原问题=二次凸优化问题二次凸优化问题=对偶问题对偶问题对偶问题求解:对偶问题求解:更巧妙的地方:更巧妙的地方:未知数据未知数据x的预测,只需要计算它与训练数据点的内积即可的预测,只需要计算它与训练数据点的内积即可第十八页,编辑于星期六:二十一点 四十九分。非线性分类非线性分类对于以上所述的对于以上所述的SVMSVM,处理能力还是很弱,仅仅能处理线性可分的数据。如,处理能力还是很弱,仅仅能处理线性可分的数据。如果数据线性不可分的时候,我们就将低维的数据映射向更高的维次,以此果数据线性不可分的时候,我们就将低维的数据映射向更高的维次,

10、以此使数据重新线性可分。这转化的关键便是核函数。使数据重新线性可分。这转化的关键便是核函数。第十九页,编辑于星期六:二十一点 四十九分。非线性分类非线性分类找不到一个超平面(二维空间:直线)将其分割开来,而很自然找不到一个超平面(二维空间:直线)将其分割开来,而很自然的想到可以用一个椭圆将数据分为两类的想到可以用一个椭圆将数据分为两类Z1=X1,Z2=X12,Z3=X2,Z4=X22,Z5=X1X2(X1,X2)(Z1,Z2,Z3,Z4,Z5,)即将:即将:R2空间映射到空间映射到R5空间。空间。此时,总能找到一个超平面此时,总能找到一个超平面wT Z+b=0 wT=a1,a2,a3,a4,a

11、5T,b=a6 使得数据很好的分类。使得数据很好的分类。映射过后的空间映射过后的空间:第二十页,编辑于星期六:二十一点 四十九分。非线性分类非线性分类令:令:Z1=X1,Z2=X12,Z3=X2,Z4=X22,Z5=X1X2(X1,X2)(Z1,Z2,Z3,Z4,Z5,)则:对于样本则:对于样本 x1=(1,2),x2=(1,2)(x1)=1,12,2,22,12T(x2)=1,12,2,22,12 T内积内积:我们注意到:我们注意到:第二十一页,编辑于星期六:二十一点 四十九分。非线性分类非线性分类我们注意到:我们注意到:若令若令(x1)=2 21,12,2 22,22,2 212,1T则:

12、则:那么区别在于什么地方呢?那么区别在于什么地方呢?1.一个是将低维空间数据映射到高维空间中,然后再根据内积的公式进行计算;一个是将低维空间数据映射到高维空间中,然后再根据内积的公式进行计算;2.另一个则直接在原来的另一个则直接在原来的低维空间中进行计算低维空间中进行计算,而,而不需要显式不需要显式地写出映射后的结果。地写出映射后的结果。3.当样本空间处于高维度时,第一种方法将引发当样本空间处于高维度时,第一种方法将引发维度灾难维度灾难,第二种方法仍然能够从容处理,第二种方法仍然能够从容处理第二十二页,编辑于星期六:二十一点 四十九分。核函数核函数核函数:核函数:概念:概念:x,z X,X属于

13、属于Rn空间空间,非线性函数非线性函数实现输入空间实现输入空间X到特征空间到特征空间F的映的映射射,其中其中F属于属于Rm,nm。核函数技术接收。核函数技术接收2个低维空间的向量,能够计算个低维空间的向量,能够计算出经某变换后高维空间里的向量内积值。出经某变换后高维空间里的向量内积值。根据核函数技术有:根据核函数技术有:K(x,z)=其中:其中:为内积为内积,K(x,z)为核函数。为核函数。例如:例如:加入核函数以后的分类函数为:加入核函数以后的分类函数为:第二十三页,编辑于星期六:二十一点 四十九分。核函数核函数核函数应用广泛的原因:核函数应用广泛的原因:核函数的引入避免了核函数的引入避免了

14、“维数灾难维数灾难”,大大大大减小了计算量减小了计算量。而输入空间的维数。而输入空间的维数n对对核函数矩阵无影响,因此,核函数方法可以有效处理高维输入。核函数矩阵无影响,因此,核函数方法可以有效处理高维输入。无需知道非线性变换函数无需知道非线性变换函数的形式和参数的形式和参数核函数的形式和参数的变化会隐式地改变从输入空间到特征空间的映射,进而对特征核函数的形式和参数的变化会隐式地改变从输入空间到特征空间的映射,进而对特征空间的性质产生影响,最终改变各种核函数方法的性能。空间的性质产生影响,最终改变各种核函数方法的性能。核函数方法可以和不同的算法相结合,形成多种不同的基于核函数技术的方法,核函数

15、方法可以和不同的算法相结合,形成多种不同的基于核函数技术的方法,且这且这两部分的设计可以单独进行两部分的设计可以单独进行,并可以为,并可以为不同的应用选择不同的核函数不同的应用选择不同的核函数和和算法。算法。第二十四页,编辑于星期六:二十一点 四十九分。常用的核函数常用的核函数多项式核:多项式核:线性核:线性核:高斯核:高斯核:第二十五页,编辑于星期六:二十一点 四十九分。总结总结线性可分:线性可分:求解使得超平面具有最大内间间隔的求解使得超平面具有最大内间间隔的wT,b参数。参数。将问题转化为对偶问题进行快速求解。将问题转化为对偶问题进行快速求解。改进:加入松弛变量改进:加入松弛变量 和惩罚

16、因子和惩罚因子C的的SVM l松弛变量允许实际分类中一定的不准确性的存在,引入松弛变量后原先的约束条件变为:松弛变量允许实际分类中一定的不准确性的存在,引入松弛变量后原先的约束条件变为:l惩罚因子惩罚因子C则是为了避免系统轻易放弃一些重要的数据,减小系统损失。引入则是为了避免系统轻易放弃一些重要的数据,减小系统损失。引入C后目标函数变为:后目标函数变为:第二十六页,编辑于星期六:二十一点 四十九分。总结总结线性不可分:线性不可分:将数据空间映射到高维空间,使原本线性不可分变为线性可分。将数据空间映射到高维空间,使原本线性不可分变为线性可分。引入核函数,简化映射空间中的内积运算。它引入核函数,简

17、化映射空间中的内积运算。它避开了直接在高维空间中进行计算避开了直接在高维空间中进行计算,而表现形式却而表现形式却等价于高维空间等价于高维空间。不同的样本结构与不同的核函数结合,达到很好的分割效果不同的样本结构与不同的核函数结合,达到很好的分割效果第二十七页,编辑于星期六:二十一点 四十九分。参考资料参考资料1.支持向量机导论支持向量机导论,美美 Nello Cristianini/John Shawe-Taylor 著;著;2.支持向量机导论一书的支持网站:支持向量机导论一书的支持网站:http:/www.support- Pang-Ning Tan/Michael Steinbach/Vip

18、in Kumar 著;著;4.数据挖掘:概念与技术数据挖掘:概念与技术,(加加)Jiawei Han;Micheline Kamber 著;著;5.数据挖掘中的新方法:支持向量机数据挖掘中的新方法:支持向量机,邓乃扬,邓乃扬 田英杰田英杰 著;著;6.支持向量机支持向量机-理论、算法和扩展理论、算法和扩展,邓乃扬,邓乃扬 田英杰田英杰 著;著;7.模式识别支持向量机指南模式识别支持向量机指南,C.J.C Burges 著;著;8.统计自然语言处理统计自然语言处理,宗成庆编著,第十二章、文本分类;,宗成庆编著,第十二章、文本分类;9.SVM 入门系列,入门系列,Jasper:http:/ 版版),陈宝林编著;,陈宝林编著;13.A Gentle Introduction to Support Vector Machines in Biomedicine:http:/www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf14.卡梅隆大学的讲解卡梅隆大学的讲解SVM的的PPT:http:/www.autonlab.org/tutorials/svm15.pdf;第二十八页,编辑于星期六:二十一点 四十九分。第二十九页,编辑于星期六:二十一点 四十九分。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁