《鲁教版小学五年级数学上下册知识点归纳.pdf》由会员分享,可在线阅读,更多相关《鲁教版小学五年级数学上下册知识点归纳.pdf(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、.jz*小学五年级数学知识点归纳五年级上册知识点概念总结1.小数乘整数的意义:求几个一样加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几是多少。2.小数乘法法那么先按照整数乘法的计算法那么算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0补足。3.小数除法小数除法的意义与整数除法的意义一样,就是两个因数的积与其中一个因数,求另一个因数的运算。4.除数是整数的小数除法计算法那么先按照整数除法的法那么去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0,再继续除。5.除数是小数的除法计算法那么
2、先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位位数不够的补“0,然后按照除数是整数的除法法那么进展计算。6.积的近似数:四舍五入是一种准确度的计数保存法,与其他方法本质一样。但特殊之处在于,采用四舍五入,能使被保存局部的与实际值差值不超过最后一位数量级的二分之一:假设09 等概率出现的话,对大量的被保存数据,这种保存法的误差总和是最小的。7.数的互化1小数化成分数原来有几位小数,就在1 的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。.jz*2分数化成小数用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保存三位小数。3化有限小数一
3、个最简分数,如果分母中除了2 和 5 以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2 和 5 以外的质因数,这个分数就不能化成有限小数。4小数化成百分数只要把小数点向右移动两位,同时在后面添上百分号。5百分数化成小数把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。6分数化成百分数通常先把分数化成小数 除不尽时,通常保存三位小数),再把小数化成百分数。7百分数化成小数先把百分数改写成分数,能约分的要约成最简分数。8.小数的分类1 有限小数:小数局部的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23 都是有限小数。2无限小数:小数局部的数位是无
4、限的小数,叫做无限小数。例如:4.33 3.1415926 3无限不循环小数:一个数的小数局部,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。.jz*4循环小数:一个数的小数局部,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.555 0.0333 12.109109;一个循环小数的小数局部,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99 的循环节是“9 ,0.5454 的循环节是“54 。9.循环节:如果无限小数的小数点后,从某一位起向右进展到某一位止的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节。把循环小数写成个别项
5、与一个无穷等比数列的和的形式后可以化成一个分数。10.简易方程:方程 axb=c a,b,c 是常数叫做简易方程。11.方程:含有未知数的等式叫做方程。注意方程是等式,又含有未知数,两者缺一不可方程和算术式不同。算术式是一个式子,它由运算符号和数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。12.方程的解使方程左右两边相等的未知数的值,叫做方程的解。如果两个方程的解一样,那么这两个方程叫做同解方程。13.方程的同解原理:1方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。2方程的两边同乘或同除同一个不为的数所得的
6、方程与原方程是同解方程。14.解方程:解方程,求方程的解的过程叫做解方程。15.列方程解应用题的意义:用方程式去解容许用题求得应用题的未知量的方法。16.列方程解容许用题的步骤1弄清题意,确定未知数并用x 表示;2找出题中的数量之间的相等关系;3列方程,解方程;4检查或验算,写出答案。17.列方程解应用题的方法1综合法.jz*先把应用题中数量和所设未知数量列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从局部到整体的一种思维过程,其思考方向是从到未知。2分析法先找出等量关系,再根据具体建立等量关系的需要,把应用题中数量和所设的未知数量 列成有关的代数式进而列出方程。这是从整体到局
7、部的一种思维过程,其思考方向是从未知到。18.列方程解应用题的围:小学围常用方程解的应用题:1一般应用题;2和倍、差倍问题;3几何形体的周长、面积、体积计算;4分数、百分数应用题;5比和比例应用题。19.平行四边形的面积公式:底高推导方法如图;如用“h表示高,“a表示底,“S表示平行四边形面积,那么S 平行四边=ah 20.三角形面积公式:S=1/2*ah a 是三角形的底,h 是底所对应的高21.梯形面积公式 1梯形的面积公式:上底+下底高2。用字母表示:a+b h2 2另一计算公式:中位线高用字母表示:lh 3对角线互相垂直的梯形:对角线对角线2 扩展资料1.小数分类1纯小数:整数局部是零
8、的小数,叫做纯小数。例如:0.25、0.368 都是纯小数。2带小数:整数局部不是零的小数,叫做带小数。例如:3.25、5.26 都是带小数。.jz*3纯循环小数:循环节从小数局部第一位开场的,叫做纯循环小数。例如:3.1110.5656 4混循环小数:循环节不是从小数局部第一位开场的,叫做混循环小数。3.12220.03333 写循环小数的时候,为了简便,小数的循环局部只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。2.循环节的表示方法小数化分数分成两类。一类:纯循环小数化分数,循环节做分子;连写几个九作分母,循环节有几位写几个
9、九。另一类:混循环小数化分数问题就是这类的,小数局部减去不循环的数字作分子;连写几个9 再紧接着连写几个0 作分母,循环节是几个数就写几个9,不循环 小数局部的数是几个就写几个0。3.平行四边形的面积平行四边形的面积等于两组邻边的积乘以夹角的正弦值;4.三角形的面积(1)S=1/2*ah a是三角形的底,h 是底所对应的高(2)S=1/2acsinB=1/2bcsinA=1/2absinC三个角为A B C,对边分别为a,b,c,参见三角函数(3)S=abc/(4R)(R是外接圆半径)(4)S=(a+b+c)r/2(r是切圆半径)(5)S=c2sinAsinB/2sin(A+B)五年级下册知识
10、点概括总结1.轴对称:如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,这个图形就叫做轴对称图形,这时,我们也说这个图形关于这条直线成轴对称。对称轴:折痕所在的这条直线叫做对称轴。如下列图所示:.jz*2.轴对称图形的性质把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点。轴对称和轴对称图形的特性是一样的,对应点到对称轴的距离都是相等的。3.轴对称的性质经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。这样我们就得到了以下性质:1如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连
11、线段的垂直平分线。2类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。3线段的垂直平分线上的点与这条线段的两个端点的距离相等。4对称轴是到线段两端距离相等的点的集合。4.轴对称图形的作用 1可以通过对称轴的一边从而画出另一边;2可以通过画对称轴得出的两个图形全等。5.因数整数B 能整除整数A,A 叫作 B 的倍数,B 就叫做A 的因数或约数。在自然数的围例:在算式6 2=3 中,2、3 就是 6 的因数。6.自然数的因数举例6 的因数有:1 和 6,2 和 3。10 的因数有:1 和 10,2 和 5。15 的因数有:1 和 15,3 和 5。25 的因数有:1 和 25,5。
12、7.因数的分类.jz*除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数和商是被除数的因数。我们将一个合数分成几个质数相乘的形式,这样的几个质数叫做这个合数的质因数。8.倍数:对于整数m,能被n 整除 n/m,那么 m 就是 n 的倍数。如15 能够被3 或 5整除,因此15 是 3 的倍数,也是5 的倍数。一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。9.完全数:完全数又称完美数或完备数,是一些特殊的自然数。它所有的真因子即除了自身以外的约数的和即因子函数,恰好等于它本身。10.偶数:整数中,
13、能够被2 整除的数,叫做偶数。11.奇数:整数中,能被2 整除的数是偶数,不能被2 整除的数是奇数,12.奇数偶数的性质关于奇数和偶数,有下面的性质:1奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;2奇数跟奇数和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和都是偶数;3两个奇偶数的差是偶数;一个偶数与一个奇数的差是奇数;4除 2 外所有的正偶数均为合数;5相邻偶数最大公约数为2,最小公倍数为它们乘积的一半。6奇数的积是奇数;偶数的积是偶数;奇数与偶数的积是偶数;(7)偶数的个位上一定是0、2、4、6、8;奇数的个位上是1、3、5、7、9。13.质数:指在一个大于1 的自然数中,除了1
14、 和此整数自身外,没法被其他自然数整除的数。14.合数:比 1 大但不是素数的数称为合数。1 和 0 既非素数也非合数。合数是由假设干个质数相乘而得到的。质数是合数的根底,没有质数就没有合数。15.长方体:由六个长方形特殊情况有两个相对的面是正方形围成的立体图形叫长方体.长方体的任意一个面的对面都与它完全一样。.jz*16.长、宽、高:长方体的每一个矩形都叫做长方体的面,面与面相交的线叫做长方体的棱,三条棱相交的点叫做长方体的顶点,相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。17.长方体的特征:(1)长方体有6 个面,每个面都是长方形,至少有两个相对的两个面完全一样。特殊情况时有两
15、个面是正方形,其他四个面都是长方形,并且完全一样。(2)长方体有12 条棱,相对的棱长度相等。可分为三组,每一组有4 条棱。还可分为四组,每一组有3 条棱。(3)长方体有8 个顶点。每个顶点连接三条棱。(4)长方体相邻的两条棱互相相互垂直。18.长方体的外表积因为相对的2 个面相等,所以先算上下两个面,再算前后两个面,最后算左右两个面。设一个长方体的长、宽、高分别为a、b、c,那么它的外表积S:S=2ab+2bc+2ca=2(ab+bc+ca)19.长方体的体积长方体的体积=长宽高设一个长方体的长、宽、高分别为a、b、c,那么它的体积V:V=abc=Sh 20.长方体的棱长长方体的棱长之和=长
16、+宽+高 4 长方体棱长字母公式C=4(a+b+c)相对的棱长长度相等长方体棱长分为3 组,每组4 条棱。每一组的棱长度相等21.正方体:侧面和底面均为正方形的直平行六面体叫正方体,即棱长都相等的六面体,又称“立方体、“正六面体。正方体是特殊的长方体。22.正方体的特征 1有 6 个面,每个面完全一样。.jz*2有 8 个顶点。3有 12 条棱,每条棱长度相等。4相邻的两条棱互相相互垂直。23.正方体的外表积:因为6 个面全部相等,所以正方体的外表积一个面的面积6=棱长棱长6 设一个正方体的棱长为a,那么它的外表积S:S=6 aa 或等于S=6a224.正方体的体积正方体的体积棱长棱长棱长;设
17、一个正方体的棱长为a,那么它的体积为:V=a a a 25.正方体的展开图正方体的平面展开图一共有11 种。26.分数:把单位“1平均分成假设干份,表示这样的一份或几份的数叫分数。表示这样的一份的数叫分数单位。27.分数分类:分数可以分成:真分数,假分数,带分数,百分数28.真分数:分子比分母小的分数,叫做真分数。真分数小于一。如:1/2,3/5,8/9等等。真分数一般是在正数的围研究的。29.假分数:分子大于或者等于分母的分数叫假分数,假分数大于1 或等于1.假分数通常可以化为带分数或整数。如果分子和分母成倍数关系,就可化为整数,如不是倍数关系,那么化为带分数。30.分数的根本性质:分数的分
18、子和分母同时乘以或除以一个不为0 的数,分数的值不变。31.约分:把一个分数化成和它相等,但分子、分母都比拟小的分数,叫做约分32.公因数:在两个或两个以上的自然数中,如果它们有一样的因数,那么这些因数就叫做它们的公因数。任何两个自然数都有公因数1.除零以外而这些公因数中最大的那个称为这些正整数的最大公因数。.jz*33.通分:根据分数的根本性质,把几个异分母分数化成与原来分数相等的且分母一样的分数,叫做通分。34.通分方法1求出原来几个分数的分母的最小公倍数2根据分数的根本性质,把原来分数化成以这个最小公倍数为分母的分数35.公倍数:指在两个或两个以上的自然数中,如果它们有一样的倍数,这些倍
19、数就是它们的公倍数。这些公倍数中最小的,称为这些整数的最小公倍数36.分数加减法 1同分母分数相加减,分母不变,即分数单位不变,分子相加减,最后要化成最简分数。2异分母分数相加减,先通分,即运用分数的根本性质将异分母分数转化为同分母分数,改变其分数单位而大小不变,再按同分母分数相加减法去计算,最后要化成最简分数。37.统计图:复式折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来,以折线的上升或下降来表示统计数量增减变化。折线统计图不但可以表示出数量的多少,而且还能够清楚的表示出数量增减变化的情况。扩展资料1.约数与因数区别:1数域不同。约数只能是自
20、然数,而因数可以是任何数。2关系不同。约数是对两个自然数的整除关系而言,只要两个数是自然数,就能确定它们之间是否存在约数关系,如:40 5=8,40 能被 5 整除,5 就是 40 的约数,12 10=1.2,12 不能被10 整除,10 不是 12 的约数。因数是两个或两个以上的数对它们的乘积关系而言的。如:82=16,8 和 2 都是积16 的因数,离开乘积算式就没有因数了。3大小关系不同.当数a 是数 b 的约数时,a不能大于b,当a 是 b 的因数时,a 可以大于b,也可以小于b。一般情况下,约数等于因数。2.公因数.jz*两个或多个非零自然数公有的因数叫做它们的公因数。两个数共有的因
21、数里最大的那一个叫做它们的最大公因数。零除外)其它:1 是所有非零自然数的公因数。两个成倍数关系的自然数之间,小的那一个数就是这两个数的最大公因数。3.完全数的由来:公元前6 世纪的毕达哥拉斯是最早研究完全数的人,他已经知道6 和 28 是完全数。毕达哥拉斯曾说:“6 象征着完满的婚姻以及安康和美丽,因为它的局部是完整的,并且其和等于自身。不过,或许印度人和希伯来人早就知道它们的存在了。有些圣经 注释家认为6 和 28 是上帝创造世界时所用的根本数字,他们指出,创造世界花了六天,二十八天那么是月亮绕地球一周的日数。圣奥古斯丁说:6 这个数本身就是完全的,并不因为上帝造物用了六天;事实恰恰相反,
22、因为这个数是一个完全数,所以上帝在六天之把一切事物都造好了。4.完全数的性质 1它们都能写成连续自然数之和例如:6=1+2+3 28=1+2+3+4+5+6+7 496=1+2+3+30+31 2每个都是调和数它们的全部因数的倒数之和都是2,因此每个完全数都是调和数。例如:1/1+1/2+1/3+1/6=2 1/1+1/2+1/4+1/7+1/14+1/28=2 3可以表示成连续奇立方数之和除 6 以外的完全数,还可以表示成连续奇立方数之和。例如:28=13+33496=13+33+53+738128=13+33+53+15333550336=13+33+53+1253+1273 4都可以表达
23、为2 的一些连续正整数次幂之和.jz*5.完全数都是以6 或 8 结尾:如果以8 结尾,那么就肯定是以28 结尾。6.各位数字相加直到变成个位数那么一定是1 除 6 以外的完全数,把它的各位数字相加,直到变成个位数,那么这个个位数一定是 1。亦即:除6 以外的完全数,被9 除都余17.与质数有关的猜测 1哥德巴赫猜测哥德巴赫猜测大致可以分为两个猜测前者称“强或“二重哥德巴赫猜测后者称“弱或“三重哥德巴赫猜测):1、每个不小于6 的偶数都可以表示为两个奇素数之和;2、每个不小于9 的奇数都可以表示为三个奇素数之和。2黎曼猜测黎曼猜测是一个困扰数学界多年的难题,最早由德国数学家波恩哈德黎曼提出,迄
24、今为止仍未有人给出一个令人完全信服的合理证明。即如何证明“关于素数的方程的所有意义的解都在一条直线上。此条质数之规律的质数月经过整形,“关于素数的方程的所有意义的解都在一条直线上化为1球体素数分布。3孪生素数猜测1849 年,波林那克提出孪生素数猜测,即猜测存在无穷多对孪生素数。猜测中的“孪生素数是指一对素数,它们之间相差2。例如3 和 5,5 和 7,11和 13,10016957 和 10016959 等等都是孪生素数。10016957 和 10016959 是发生在第333899 位序号质数月的中旬181的孪生素数。8.分数由来分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后
25、来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人创造了分数线,分数的表示法就成为现在这样了。200 多年前,瑞士数学家欧拉,在通用算术一书中说,要想把7 米长的一根绳子分成三等份是不可能的,因为找不到一个适宜的数来表示它如果我们把它分成三等份,每份是7/3 米像7/3 就是一种新的数,我们把它叫做分数。9.分数乘除法 1分数乘整数,分母不变,分子乘整数,最后要化成最简分数。.jz*2分数乘分数,用分子乘分子,用分母乘分母,最后要化成最简分数。3分数除以整数,分母不变,如果分子是整数的倍数,那么用分子除以整数,最后要化成最简分数。4分数除以整数,分母不变,如果分子不是整数的倍数,那么用这个
26、分数乘这个整数的倒数,最后要化成最简分数。5分数除以分数,等于被除数乘除数的倒数,最后不是最简分数要化成最简分数。小学数学概念、定律、公式、问题和单位换算方程、代数与等式等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的根本性质:等式两边同时乘以或除以一个一样的数,等式仍然成立。方程式:含有未知数的等式叫方程式。一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有 的算式并计算。代数:代数就是用字母代替数。代数式:用字母表示的式子叫做代数式。如:3x=ab+c 分数分数:把单位“1平均分成假设干份,表示这样的一份
27、或几分的数,叫做分数。分数大小的比拟:同分母的分数相比拟,分子大的大,分子小的小。异分母的分数相比拟,先通分然后再比拟;假设分子一样,分母大的反而小。分数的加减法那么:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。分数的加、减法那么:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。倒数的概念:如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。分数除以整数0 除外,等于
28、分数乘以这个整数的倒数。.jz*分数的根本性质:分数的分子和分母同时乘以或除以同一个数0 除外,分数的大小。分数的除法那么:除以一个数 0 除外,等于乘这个数的倒数。真分数:分子比分母小的分数叫做真分数。假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。带分数:把假分数写成整数和真分数的形式,叫做带分数。分数的根本性质:分数的分子和分母同时乘以或除以同一个数0 除外,分数的大小不变。比什么叫比:两个数相除就叫做两个数的比。如:25或 3:6或 1/3 比的前项和后项同时乘以或除以一个一样的数0除外,比值不变。什么叫比例:表示两个比相等的式子叫做比例。如3:69:18
29、比例的根本性质:在比例里,两外项之积等于两项之积。解比例:求比例中的未知项,叫做解比例。如3:9:18 正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值 也就是商k一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k 一定)或 kx=y 反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x y=k(k 一定)或 k/x=y 百分数百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。把小数化成百分数,
30、只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。把分数化成百分数,通常先把分数化成小数除不尽时,通常保存三位小数,再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以 100就行了。把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。要学会把小数化成分数和把分数化成小数的化发。.jz*倍数与约数最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。最小公倍数:几个数公有的倍数,叫做这几个数的公
31、倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。互质数:公约数只有1 的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1 和任何数互质。通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。通分用最小公倍数约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。质数素数:一个数,如果只有1 和它本身两个约数,这样的数叫做质数或素数。合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1 不是质数,也不是合数。质因数:如果一个质数是某个
32、数的因数,那么这个质数就是这个数的质因数。分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。倍数特征:2 的倍数的特征:各位是0,2,4,6,8。3或 9的倍数的特征:各个数位上的数之和是3或 9的倍数。5 的倍数的特征:各位是0,5。4或 25的倍数的特征:末2 位是 4或 25的倍数。8或 125的倍数的特征:末3 位是 8或 125的倍数。711 或 13的倍数的特征:末3 位与其余各位之差大-小是 711 或 13的倍数。17或 59的倍数的特征:末3 位与其余各位3 倍之差大-小是 17或 59的倍数。19或 53的倍数的特征:末3 位与其余各位7 倍之差大-小是 19
33、或 53的倍数。23或 29的倍数的特征:末4 位与其余各位5 倍之差大-小是 23或 29的倍数。倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。互质关系的两个数,最大公约数为1,最小公倍数为乘积。.jz*两个数分别除以他们的最大公约数,所得商互质。两个数的最大公约数与最小公倍数的乘积等于这两个数的乘积。两个数的公约数一定是这两个数最大公约数的约数。1 既不是质数也不是合数。用 6 去除大于3 的质数,结果一定是1 或 5。奇数与偶数偶数:个位是0,2,4,6,8 的数。奇数:个位不是0,2,4,6,8 的数。偶数偶数偶数奇数奇数奇数奇数偶数奇数偶数个偶数相加是偶数,奇数个奇数相加
34、是奇数。偶数偶数偶数奇数奇数奇数奇数偶数偶数相临两个自然数之和为奇数,相临自然数之积为偶数。如果乘式中有一个数为偶数,那么乘积一定是偶数。奇数偶数小数自然数:用来表示物体个数的整数,叫做自然数。0 也是自然数。纯小数:个位是0 的小数。带小数:各位大于0 的小数。循环小数:一个小数,从小数局部的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3.141414 不循环小数:一个小数,从小数局部起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3.141592654 无限循环小数:一个小数,从小数局部到无限位数,一个数字或几个数字依次不断的重复出现
35、,这样的小数叫做无限循环小数。如3.141414 无限不循环小数:一个小数,从小数局部起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3.141592654 算术定律1、加法交换律:两数相加交换加数的位置,和不变。2、加法结合律:a+b=b+a.jz*3、乘法交换律:a b=b a 4、乘法结合律:a b c=a (b c)5、乘法分配律:a b+a c=a b+c 6、除法的性质:a b c=a (b c)7、除法的性质:在除法里,被除数和除数同时扩大或缩小一样的倍数,商不变。0除以任何不是0 的数都得0。8、简便乘法:被乘数、乘数末尾有0 的乘法,可
36、以先把0 前面的相乘,0 不参加运算,有几个 0都落下,添在积的末尾。9、有余数的除法:被除数商除数+余数四那么运算规那么1.加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。2.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即a+b)+c=a+(b+c)。3.乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a b=b a。4.乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a b)c=a (b c)。5.乘法分配律:两个数的和与一个数
37、相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)c=a c+b c。6.减法的性质:从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c)。7.除法的运算性质:一个数除以两个数的积,等于这个数依次除以积的两个因数。即a(b c)=abc 数量关系计算公式1、每份数份数总数总数每份数份数总数份数每份数2、1 倍数倍数几倍数几倍数1 倍数倍数几倍数倍数1 倍数3、速度时间路程路程速度时间路程时间速度4、单价数量总价总价单价数量总价数量单价5、工作效率工作时间工作总量工作总量工作效率工作时间工作总量工作时间工作效率.jz*6、加数加数和和一个加
38、数另一个加数7、被减数减数差被减数差减数差减数被减数8、因数因数积积一个因数另一个因数9、被除数除数商被除数商除数商除数被除数数学图形计算公式1、正方形C:周长S:面积a:边长1)周长边长4 C=4a2)面积=边长边长S=a a 2、正方体V:体积a:棱长1)外表积=棱长棱长6 S表=a a 6 2)体积=棱长棱长棱长V=a a a 3、长方形C:周长S:面积a:边长1)周长=(长+宽)2 C=2(a+b)2)面积=长宽S=ab 4、长方体V:体积s:面积a:长 b:宽h:高1)外表积(长宽+长高+宽高)2 S=2(ab+ah+bh)2)体积=长宽高V=abh 5、三角形S:面积a:底h:高面
39、积=底高2 S=ah 2 三角形高=面积 2底三角形底=面积 2高6、平行四边形S:面积a:底h:高面积=底高S=ah.jz*7、梯形S:面积a:上底b:下底h:高面积=(上底+下底)高2 S=(a+b)h 2 8、圆形S:面积C:周长d=直径r=半径周长=直径=2半径C=d=2 r 面积=半径半径S=r29、圆柱体V:体积h:高S:底面积r:底面半径c:底面周长1)侧面积=底面周长高S=ch 2)外表积=侧面积+底面积2 3)体积=底面积高4)体积侧面积2半径10、圆锥体V:体积h:高S:底面积r:底面半径体积=底面积高3 V=Sh 3和差问题(和差)2大数(和差)2小数和倍问题和(倍数1)
40、小数小数倍数大数(或者和小数大数)差倍问题差(倍数1)小数小数倍数大数(或 小数差大数).jz*植树问题1非封闭线路上的植树问题主要可分为以下三种情形:、如果在非封闭线路的两端都要植树,那么:株数段数 1全长株距1 全长株距(株数1)株距全长(株数1)、如果在非封闭线路的一端要植树,另一端不要植树,那么:株数段数全长株距全长株距株数株距全长株数、如果在非封闭线路的两端都不要植树,那么:株数段数 1全长株距1 全长株距(株数1)株距全长(株数1)2封闭线路上的植树问题的数量关系如下株数段数全长株距全长株距株数株距全长株数盈亏问题(盈亏)两次分配量之差参加分配的份数(大盈小盈)两次分配量之差参加分
41、配的份数(大亏小亏)两次分配量之差参加分配的份数相遇问题相遇路程速度和相遇时间相遇时间相遇路程速度和速度和相遇路程相遇时间.jz*追及问题追及距离速度差追及时间追及时间追及距离速度差速度差追及距离追及时间流水问题顺流速度静水速度水流速度逆流速度静水速度水流速度静水速度(顺流速度逆流速度)2 水流速度(顺流速度逆流速度)2 浓度问题溶质的重量溶剂的重量溶液的重量溶质的重量溶液的重量100%浓度溶液的重量浓度溶质的重量溶质的重量浓度溶液的重量利润与折扣问题利润售出价本钱利润率利润本钱100%(售出价本钱1)100%涨跌金额本金涨跌百分比折扣实际售价原售价100%(折扣1)利息本金利率时间税后利息本
42、金利率时间(1 20%)*时间:一般以年或月为单位,应与利率的单位相对应*利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。长度单位换算(一)、什么是长度长度是一维空间的度量。(二)、长度常用单位*公里(km)*米(m)*分米(dm)*厘米(cm)*毫米(mm)*微米(um).jz*(三)、单位之间的换算1 千米=1000 米1 米=10 分米1 米=100 厘米1 分米=10 厘米1 厘米=10 毫米面积单位换算一、什么是面积面积,就是物体所占平面的大小。对立体物体的外表的多少的测量一般称外表积。二、常用的面积单位*平方毫米*平方厘米*平方分
43、米*平方米*平方千米三、面积单位的换算1 平方千米=100 公顷1 公顷=10000 平方米1 平方米=100 平方分米1 平方分米=100 平方厘米1 平方厘米=100 平方毫米体(容)积单位换算一、什么是体积、容积体积,就是物体所占空间的大小。容积,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。二、常用单位1、体积单位*立方米*立方分米*立方厘米2、容积单位*升*毫升三、单位换算1 立方米=1000立方分米1 立方分米=1000立方厘米1 立方分米=1 升1 立方厘米=1 毫升.jz*1 立方米=1000升重量单位换算一、什么是重量重量,就是表示表示物体有多重。二、常用单位*吨
44、 t*千克kg*克 g 三、常用换算1 吨=1000 千克1 千克=1000 克1 千克=1 公斤人民币单位换算一、什么是货币货币是充当一切商品的等价物的特殊商品。货币是价值的一般代表,可以购置任何别的商品。二、常用单位*元*角*分三单位换算1 元=10 角1 角=10 分1 元=100 分时间单位换算一、什么是时间是指有起点和终点的一段时间二、常用单位世纪、年、月、日、时、分、秒三单位换算1 世纪=100 年 1 年=12 月大月(31 天)有:135781012月小月(30 天)的有:46911月平年 2月 28 天,闰年 2 月 29 天平年全年365天,闰年全年 366 天1 日=24 小时1 时=60 分.jz*1 分=60 秒 1 时=3600 秒