概率统计建模的理论与方法精选课件.ppt

上传人:石*** 文档编号:74897889 上传时间:2023-03-01 格式:PPT 页数:77 大小:2.61MB
返回 下载 相关 举报
概率统计建模的理论与方法精选课件.ppt_第1页
第1页 / 共77页
概率统计建模的理论与方法精选课件.ppt_第2页
第2页 / 共77页
点击查看更多>>
资源描述

《概率统计建模的理论与方法精选课件.ppt》由会员分享,可在线阅读,更多相关《概率统计建模的理论与方法精选课件.ppt(77页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、关于概率统计建模的理论与方法1第一页,本课件共有77页2一、随机变量及其分布一、随机变量及其分布 1.二项分布二项分布例例1.能量供应问题能量供应问题 假定有假定有 个工人间歇性地使用电力,估计所需要个工人间歇性地使用电力,估计所需要的总负荷。的总负荷。首先我们要知道,或者是假定,每个工人彼此独立工作,首先我们要知道,或者是假定,每个工人彼此独立工作,而每一时刻每个工人都以相同的概率而每一时刻每个工人都以相同的概率p需要一个单位的电力。那么,需要一个单位的电力。那么,同时使用电力的人数就是一个随机变量,它服从所谓的二项分布。用同时使用电力的人数就是一个随机变量,它服从所谓的二项分布。用X表示这

2、个随机变量,记做表示这个随机变量,记做 ,且 这是非常重要的一类概率分布。其中这是非常重要的一类概率分布。其中E(X)E(X)npnp,D(X)=np(1-p)D(X)=np(1-p)。第二页,本课件共有77页3 其次,要根据经验来估计出,其次,要根据经验来估计出,p p值是多少?例如,一个工人值是多少?例如,一个工人在一个小时里有在一个小时里有1212分钟在使用电力,那么应该有分钟在使用电力,那么应该有最后,利用公式我们求出随机变量最后,利用公式我们求出随机变量X的的概率分布概率分布表如下:表如下:X012345678910P0.1073740.2684350.301990.2013270.

3、088080.0264240.0055050.0007860.0000740.0000040.000000累积概率0.1073740.375810.67780.8791260.9672070.9936310.9991360.9999220.99999611为直观计,我们给出如下概率分布图:为直观计,我们给出如下概率分布图:第三页,本课件共有77页4可以看出,可以看出,也就是说,如果供应也就是说,如果供应6 6个单位的电力,则超负荷工作的个单位的电力,则超负荷工作的概率只有概率只有0.0008640.000864,即每,即每中,才可能有一分钟电力不够用。还可以算出,八个或八中,才可能有一分钟电力

4、不够用。还可以算出,八个或八个以上工人同时使用电力的概率就更小了,比上面概率的个以上工人同时使用电力的概率就更小了,比上面概率的1/111/11还要小。还要小。问题:二项分布是一个重要的用来计数的分布。什么问题:二项分布是一个重要的用来计数的分布。什么样的随机变量会服从二项分布?样的随机变量会服从二项分布?进行进行n次独立观测,在每次观测中所关心的事件出现次独立观测,在每次观测中所关心的事件出现的概率都是的概率都是p,那么在这,那么在这n次观测中事件次观测中事件A出现的总次数出现的总次数是一个服从二项分布是一个服从二项分布B(n,p)。)。第四页,本课件共有77页5 练习:用练习:用MATLA

5、B计算本题计算本题binopdf(x,n,p)计算计算x中每个值对应的二项分布概率中每个值对应的二项分布概率binocdf(x,n,p)计算计算x中每个值对应的分布函数值中每个值对应的分布函数值 例如例如binopdf(0:10,10,0.2)第五页,本课件共有77页62.Poisson分布分布例例2.Rutherford 对裂变物质的观测对裂变物质的观测 英国著名物理学家英国著名物理学家 Rutherford(18711937)在其放射性物)在其放射性物质试验中,观测在时间间隔质试验中,观测在时间间隔T内放射性物质放射出的内放射性物质放射出的粒子数。实粒子数。实际试验时,取时间间隔为际试验时

6、,取时间间隔为T=7.5秒,观测了秒,观测了N2608次,将每次观测次,将每次观测到的粒子数记录下来,列在下表中第到的粒子数记录下来,列在下表中第1,2行:行:粒子数X0123456789=10频数n57203383525532408273139452716频率f0.0218560.0778370.1468560.2013040.2039880.1564420.1046780.0532980.0172550.0103530.006135概率p0.0208580.0807220.1561970.2014940.1949450.1508880.0973230.0538050.0260280.011

7、1920.006547第六页,本课件共有77页7 我们用我们用X表示表示T=7.5秒内观测到的秒内观测到的粒子数,它是粒子数,它是一个随机变量,服从什么分布呢?在一个随机变量,服从什么分布呢?在2608次观测中,共次观测中,共观测到观测到10094个个粒子数,平均每次观测到粒子数,平均每次观测到 =MN1009426083.87个个粒子数,用参数为粒子数,用参数为=3.87的的Poisson分布分布P计算一下:计算一下:将计算结果列在上表中最后一行,与列在第将计算结果列在上表中最后一行,与列在第3 3行的实际频行的实际频率比较,比较的图示在下图中。(率比较,比较的图示在下图中。(ExcelEx

8、cel)第七页,本课件共有77页8 可以看出,认为可以看出,认为X X服从参数为服从参数为3.873.87的的PoissonPoisson分布还是非常分布还是非常合理的。在后面统计部分合理的。在后面统计部分,我们会用我们会用PearsonPearson 拟合检验法来拟合检验法来证明这种合理性证明这种合理性第八页,本课件共有77页9 问题:问题:PoissonPoisson分布是又一类非常重要的用来分布是又一类非常重要的用来计数的离散型分布,它依赖于一个参数计数的离散型分布,它依赖于一个参数 。什么。什么样的随机变量会服从样的随机变量会服从Poisson分布呢?分布呢?练习:用练习:用MATLA

9、B计算本题计算本题poisspdf(x,),计算),计算poisson概率,概率,例如,例如,poisspdf(0:9,3.87)第九页,本课件共有77页10 在给定的观测范围内(例如给定时间内,给定区域内等等),在给定的观测范围内(例如给定时间内,给定区域内等等),事件会发生多少次?把观测范围分成事件会发生多少次?把观测范围分成n个小范围:个小范围:1.给定事件在每个小范围内可能发生,也可能不发生,发生多少给定事件在每个小范围内可能发生,也可能不发生,发生多少 次取决于小范围的大小;次取决于小范围的大小;2.在不同的小范围内发生多少事件相互独立;在不同的小范围内发生多少事件相互独立;3.在小

10、范围里发生的事件数多于一个的概率,和小范围的大小相在小范围里发生的事件数多于一个的概率,和小范围的大小相 比可以忽略不计,用比可以忽略不计,用 表示在小范围内事件发生一次的概率。表示在小范围内事件发生一次的概率。那么在给定范围内发生的总事件数那么在给定范围内发生的总事件数X近似服从近似服从 ,为给定范围内事件发生次数的近似平均值。令为给定范围内事件发生次数的近似平均值。令 ,则,则 为给定范围内事件发生次数的准确平均值,这时为给定范围内事件发生次数的准确平均值,这时这正是这正是Poisson分布,其中参数分布,其中参数 第十页,本课件共有77页113.正态分布正态分布则称此随机变量服从参数为则

11、称此随机变量服从参数为 的正态分布,记做的正态分布,记做 ,其中,其中 都是给定的参数,都是给定的参数,。称。称 为标准正态分布,为标准正态分布,用用 表示其分布函数,其密度函数为表示其分布函数,其密度函数为时,我们有时,我们有 随机变量随机变量X如果有密度函数如果有密度函数第十一页,本课件共有77页12 大量连续型随机变量服从正态分布,所以正态分布在处理大量连续型随机变量服从正态分布,所以正态分布在处理数据时是非常有用处的。我们在统计部分会大量用到它。下面数据时是非常有用处的。我们在统计部分会大量用到它。下面是正态分布的密度函数图像是正态分布的密度函数图像:第十二页,本课件共有77页134.

12、指数分布指数分布 称随机变量称随机变量X服从参数为服从参数为1的指数分布或标准指数的指数分布或标准指数分布,若它有密度函数分布,若它有密度函数它的分布函数为它的分布函数为第十三页,本课件共有77页14设设 是给定常数,则是给定常数,则Y的分布函数为的分布函数为其密度函数为其密度函数为这是一般的指数分布。这是一般的指数分布。第十四页,本课件共有77页15b b0 0的指数分布的密度函数图像如下所示的指数分布的密度函数图像如下所示(指数密度):可见,随着可见,随着的减小,随机变量取到较大值的概率增加的减小,随机变量取到较大值的概率增加事实上,事实上,随机变量的数学期望。随机变量的数学期望。指数随机

13、变量经常用来刻画寿命。指数随机变量经常用来刻画寿命。第十五页,本课件共有77页165.多维随机变量多维随机变量 我们经常需要考虑量与量之间的关系,如果这些量是我们经常需要考虑量与量之间的关系,如果这些量是随机变量,那么就需要把多个随机变量放在一起,考虑多随机变量,那么就需要把多个随机变量放在一起,考虑多元随机变量。设元随机变量。设 是是n元随机变量,它的分布元随机变量,它的分布函数是一个函数是一个n元函数:元函数:利用这个分布函数就可以讨论这利用这个分布函数就可以讨论这n个随机变量之间个随机变量之间各种各样的关系。各种各样的关系。第十六页,本课件共有77页17(1)(1)边际分布与独立性边际分

14、布与独立性相互独立当且仅当相互独立当且仅当(2)(2)相关系数相关系数 两个随机变量两个随机变量X,Y之间的相关系数定义为之间的相关系数定义为其中其中 相关系数刻画了随机变量之间的线性相关程度,越接相关系数刻画了随机变量之间的线性相关程度,越接近于近于0 0,线性相关关系越弱。,线性相关关系越弱。第十七页,本课件共有77页18 第十八页,本课件共有77页19 综上所述,我们知道在概率论里学过许多分布,综上所述,我们知道在概率论里学过许多分布,当然,还有许多分布我们没有学过。但是,在实践中当然,还有许多分布我们没有学过。但是,在实践中我们可能会遇到各种各样的分布,甚至还有没被发现我们可能会遇到各

15、种各样的分布,甚至还有没被发现的分布。在处理数据的时候,我们要搞清楚:的分布。在处理数据的时候,我们要搞清楚:1.数据是哪个或哪些指标的取值?数据是哪个或哪些指标的取值?2.这个或这些指标是不是随机变量或随机向量?这个或这些指标是不是随机变量或随机向量?3.如果是,那么它服从什么分布?如果是,那么它服从什么分布?4.用统计方法确定分布?用统计方法确定分布?5.分布确定后,用概率方法求出问题的解。分布确定后,用概率方法求出问题的解。下面我们就讨论用统计方法确定分布的问题。下面我们就讨论用统计方法确定分布的问题。第十九页,本课件共有77页20二、二、数据的统计描述与分析数据的统计描述与分析1.经验

16、分布函数和频率直方图经验分布函数和频率直方图 当我们确定讨论的指标的确是随机变量后,当我们确定讨论的指标的确是随机变量后,剩下的关键任务就是确定它的分布。那么它的剩下的关键任务就是确定它的分布。那么它的观测数据就是我们赖以解决问题的基本资料,观测数据就是我们赖以解决问题的基本资料,叫做叫做样本样本,而这个随机变量就叫做,而这个随机变量就叫做总体总体。这些。这些数据反映了该随机变量分布的基本特征。我们数据反映了该随机变量分布的基本特征。我们可以利用这些数据构造一个分布函数,理论上可以利用这些数据构造一个分布函数,理论上可以证明它很接近于那个未知分布。这个分布可以证明它很接近于那个未知分布。这个分

17、布函数就叫做经验分布函数。函数就叫做经验分布函数。第二十页,本课件共有77页21 在例在例2,我们确定所讨论的指标,我们确定所讨论的指标在时间间隔在时间间隔T秒秒内放射出的内放射出的粒子数粒子数X,是一个随机变量。且有该随机,是一个随机变量。且有该随机变量的变量的n2608个观测值,这就是一个容量为个观测值,这就是一个容量为2608的样的样本。在没有其他信息的情况下,首先应该给出该样本的本。在没有其他信息的情况下,首先应该给出该样本的经验分布函数:经验分布函数:例例6.例例2续续(经验分布函数经验分布函数)在这里我们可求出这个在这里我们可求出这个经验分布函数经验分布函数如下:如下:第二十一页,

18、本课件共有77页22第二十二页,本课件共有77页23这个函数的图像如下这个函数的图像如下(Poisson2):如果熟悉如果熟悉PoissonPoisson分布的分布函数图像的话,分布的分布函数图像的话,就可以从这个图像判断出,就可以从这个图像判断出,X X可能服从参数为可能服从参数为3.873.87的的PoissonPoisson分布。从这个经验分布函数容易解决概分布。从这个经验分布函数容易解决概率计算问题:率计算问题:第二十三页,本课件共有77页24 当然,由于是离散型的随机变量,我们可能更熟当然,由于是离散型的随机变量,我们可能更熟悉如下频率分布图像:悉如下频率分布图像:也就是说,对于离散

19、型随机变量,我们更常用的方法是也就是说,对于离散型随机变量,我们更常用的方法是绘制这种频率分布图。为了判断分布的类型,绘制这种频率分布图。为了判断分布的类型,对于离散型随机变量,要绘制频率分布图!对于离散型随机变量,要绘制频率分布图!作业:用作业:用MATLAB计算本例。计算本例。第二十四页,本课件共有77页25例例7、超市问题(频率直方图)超市问题(频率直方图)随机抽取某大学超市随机抽取某大学超市137137位顾客的购买金额的实际记录位顾客的购买金额的实际记录(单位:元),数据如下。请问购买金额服从什么分布?(单位:元),数据如下。请问购买金额服从什么分布?65.209.9029.7261.

20、1016.9214.3824.1316.9929.33 4.399.8085.9622.5037.1932.318.4035.0341.706.084.906.2820.401.807.902.5015.0529.2711.1011.0826.1017.5023.0523.123.0012.8813.189.0044.094.0045.4533.6921.9217.003.4016.306.6011.3642.308.007.4014.986.0544.9440.1460.051.5029.5818.306.0031.104.8016.343.2024.536.677.7249.4010.03

21、16.3023.6012.705.0025.357.9264.801.393.0013.600.9020.2027.2021.9313.280.9010.095.0027.4535.604.222.0020.902.0011.078.974.158.703.5017.2460.343.3027.4832.0055.4815.125.6112.400.9511.8018.6037.342.0034.079.1011.590.7028.0013.202.004.503.973.666.253.9019.6016.882.002.8025.162.865.7010.254.059.004.203.5

22、01.902.76第二十五页,本课件共有77页26 用用X X表示顾客的购买金额,那么它应该是一个连续型的随机表示顾客的购买金额,那么它应该是一个连续型的随机变量。对于连续型的随机变量,我们一般就不作它的经验分布变量。对于连续型的随机变量,我们一般就不作它的经验分布函数了,而是改作它的频率直方图。一般认为,函数了,而是改作它的频率直方图。一般认为,X X应该服从正态应该服从正态分布,数学期望为分布,数学期望为其实不然,其频率直方图如下图所示:其实不然,其频率直方图如下图所示:(超市超市)第二十六页,本课件共有77页27它很像参数为它很像参数为的指数分布密度函数,如图中红色曲线所示。所以我们就认

23、为的指数分布密度函数,如图中红色曲线所示。所以我们就认为X X的分布是这样的一个指数分布。例如,给定的分布是这样的一个指数分布。例如,给定可以求出可以求出 表明该店顾客一次消费金额在表明该店顾客一次消费金额在2020元以下的人数占到近七成。元以下的人数占到近七成。这是什么原因呢?原来这是一家小型社区超市,人们只来买日用这是什么原因呢?原来这是一家小型社区超市,人们只来买日用品,不在这里买大件。这对超市的经营管理是一个重要信息。品,不在这里买大件。这对超市的经营管理是一个重要信息。对于连续型随机变量,要绘制频率直方图!对于连续型随机变量,要绘制频率直方图!作业:作业:1、用、用Excel完成本例

24、;完成本例;2、经验分布函数经验分布函数。第二十七页,本课件共有77页28 经验分布函数、频率分布图和频率直方图可以帮助经验分布函数、频率分布图和频率直方图可以帮助我们了解随机变量的类型。当我们已经了解到随机变量我们了解随机变量的类型。当我们已经了解到随机变量的分布类型后,该随机变量的分布一般就取决于一个或的分布类型后,该随机变量的分布一般就取决于一个或几个参数了。如果知道了这些参数,就可以把分布完全几个参数了。如果知道了这些参数,就可以把分布完全确定下来。那么,如何确定这未知参数呢?(参数估计)确定下来。那么,如何确定这未知参数呢?(参数估计)第二十八页,本课件共有77页2.2.常用统计量及

25、其分布常用统计量及其分布第二十九页,本课件共有77页第三十页,本课件共有77页3.3.几个在统计中常用的概率分布几个在统计中常用的概率分布-4-2024600.050.10.150.20.250.30.350.4(1)正态分布正态分布),(2smN密度函数:222)(21)(smsp-=xexp分布函数:dyexFyx222)(21)(smsp-=其中m为均值,2s为方差,+-x.标准正态分布:N(0,1)密度函数2221)(xex-=pjdyexyx2221)(-=Fp 分布函数第三十一页,本课件共有77页第三十二页,本课件共有77页第三十三页,本课件共有77页返回返回F分布F(10,50)

26、的密度函数曲线第三十四页,本课件共有77页三、三、参数估计参数估计第三十五页,本课件共有77页1.1.点估计的求法点估计的求法(一)矩估计法第三十六页,本课件共有77页(二)极大似然估计法第三十七页,本课件共有77页2.区间估计的求法区间估计的求法第三十八页,本课件共有77页1、已知、已知DX,求,求EX的置信区间的置信区间2 未知方差未知方差DX,求,求EX的置信区间的置信区间(一一)数学期望的置信区间数学期望的置信区间(二)方差的区间估计(二)方差的区间估计返回返回第三十九页,本课件共有77页1.参数检验参数检验:如果观测的分布函数类型已知,这时构造出的 统计量依赖于总体的分布函数,这种检

27、验称为参数检验.参数检验的目的往往是对总体的参数及其有关性质作出明 确的判断.对总体X的分布律或分布参数作某种假设,根据抽取的样本观察值,运用数理统计的分析方法,检验这种假设是否正确,从而决定接受假设或拒绝假设.2.非参数检验非参数检验:如果所检验的假设并非是对某个参数作出明 确的判断,因而必须要求构造出的检验统计量的分布函数 不依赖于观测值的分布函数类型,这种检验叫非参数检验.如要求判断总体分布类型的检验就是非参数检验.四、四、假设检验假设检验第四十页,本课件共有77页假设检验的一般步骤是假设检验的一般步骤是:第四十一页,本课件共有77页(一)单个正态总体均值检验(一)单个正态总体均值检验1

28、 1、参数检验、参数检验第四十二页,本课件共有77页第四十三页,本课件共有77页(二)单个正态总体方差检验(二)单个正态总体方差检验第四十四页,本课件共有77页(三)两个正态总体均值检验(三)两个正态总体均值检验第四十五页,本课件共有77页(四)两个正态总体方差检验(四)两个正态总体方差检验第四十六页,本课件共有77页47例例9、续例、续例2(离散型)(离散型)例例2中认为在时间间隔中认为在时间间隔 内放射性物质放射出的内放射性物质放射出的粒子粒子数数X X服从服从PoissonPoisson分布,是否合理?我们现在解决这个问题。分布,是否合理?我们现在解决这个问题。这是一个非参数假设检验问题

29、,原假设为这是一个非参数假设检验问题,原假设为 H H0 0:X:X服从服从PoissonPoisson分布分布当然其对立假设就是当然其对立假设就是X X不服从不服从PoissonPoisson分布。分布。2.2.非参数检验非参数检验第四十七页,本课件共有77页48检验的第一步检验的第一步要解决的问题是,要解决的问题是,如果如果H H0 0成立成立,那么它服从参数,那么它服从参数为多少的为多少的PoissonPoisson分布?要先估计未知参数。因为这时分布?要先估计未知参数。因为这时所以所以用点估计法有,用点估计法有,可知如果可知如果H H0成立,那么成立,那么 检验的第二步检验的第二步要解

30、决的问题是,观测数据是否支持原假设?要解决的问题是,观测数据是否支持原假设?如果原假设成立,如果原假设成立,那么那么X X的分布如表中的分布如表中1 1、4 4行所示,我们可以计算出在总共行所示,我们可以计算出在总共N N26082608次观测中次观测中X X取每个值的理论频数取每个值的理论频数NpNpk:粒子数X012345678910频数n57203383525532408273139452716频率f0.0218560.0778370.1468560.2013040.2039880.1564420.1046780.0532980.0172550.0103530.006135理论概率pk0

31、.0208580.0807220.1561970.2014940.1949450.1508880.0973230.0538050.0260280.0111920.006547理论频数Npk54.39863210.5227407.3614525.4962508.4176393.5152253.8173140.324767.8820829.1892917.07489第四十八页,本课件共有77页49第四十九页,本课件共有77页50第五十页,本课件共有77页51第五十一页,本课件共有77页52(二)概率纸检验法(二)概率纸检验法 概率纸是一种判断总体分布的简便工具.使用它们,可以很快地判断总体分布的类

32、型.概率纸的种类很多.返回返回第五十二页,本课件共有77页五、五、MATLAB统计工具箱中的基本统计命令统计工具箱中的基本统计命令1.数据的录入、保存和调用数据的录入、保存和调用2.基本统计量基本统计量3.常见概率分布的函数常见概率分布的函数4.4.频频 数数 直直 方方 图图 的的 描描 绘绘5.参数估计参数估计6.假设检验假设检验7.综合实例综合实例返回返回第五十三页,本课件共有77页1.数据的录入、保存和调用数据的录入、保存和调用 例例1 上海市区社会商品零售总额和全民所有制职工工资总额的数据如下统计工具箱中的基本统计命令第五十四页,本课件共有77页(1)年份数据以1为增量,用产生向量的

33、方法输入。命令格式:x=a:h:bx=a:h:b t=78:87(2)分别以x和y代表变量职工工资总额和商品零售总额。x=23.8,27.6,31.6,32.4,33.7,34.9,43.2,52.8,63.8,73.4 y=41.4,51.8,61.7,67.9,68.7,77.5,95.9,137.4,155.0,175.0(3)将变量t、x、y的数据保存在文件data中。save data t x y (4)进行统计分析时,调用数据文件data中的数据。load dataTo MATLAB(txy)第五十五页,本课件共有77页(1)输入矩阵:data=78,79,80,81,82,83,

34、84,85,86,87,88;23.8,27.6,31.6,32.4,33.7,34.9,43.2,52.8,63.8,73.4;41.4,51.8,61.7,67.9,68.7,77.5,95.9,137.4,155.0,175.0(2)将矩阵data的数据保存在文件data1中:save data1 data(3 3)进行统计分析时,先用命令:load data1load data1 调用数据文件data1中的数据,再用以下命令分别将矩阵data的第一、二、三行的数据赋给变量t、x、y:t=data(1,:)x=data(2,:)y=data(3,:)若要调用矩阵data的第j列的数据,可

35、用命令:data(:,j)To MATLAB(data)返回返回第五十六页,本课件共有77页2.基本统计量基本统计量对随机变量x,计算其基本统计量的命令如下:均值:mean(x)mean(x)中位数:median(x)median(x)标准差:std(x)std(x)方差:var(x)var(x)偏度:skewness(x)峰度:kurtosis(x)例例 对例1中的职工工资总额x,可计算上述基本统计量。To MATLAB(tjl)返回返回第五十七页,本课件共有77页3.常见概率分布的函数常见概率分布的函数Matlab工具箱对每一种分布都提供五类函数,其命令字符为:概率密度:pdf pdf 概

36、率分布:cdfcdf逆概率分布:inv inv 均值与方差:statstat随机数生成:rnd (当需要一种分布的某一类函数时,将以上所列的分布命令字符与函数命令字符接起来,并输入自变量(可以是标量、数组或矩阵)和参数即可.)第五十八页,本课件共有77页在Matlab中输入以下命令:x=-6:0.01:6;y=normpdf(x);z=normpdf(x,0,2);plot(x,y,x,z)(1)密度函数)密度函数:p=normpdf(x,mu,sigma)(当mu=0,sigma=1时可缺省)To MATLAB(liti2)如对均值为mu、标准差为sigma的正态分布,举例如下:第五十九页,

37、本课件共有77页To MATLAB(liti3)(3)逆概率分布)逆概率分布:x=norminv(P,mu,sigma).即求出x,使得PX50),按中心极限定理,它近似地 服从正态分布;b.使用Matlab工具箱中具有特定分布总体的估计命令.(1)muhat,muci=expfit(X,alpha)-在显著性水平alpha下,求指数分布的数据X的均值的点估计及其区间估计.(2)lambdahat,lambdaci=poissfit(X,alpha)-在显著性水平alpha下,求泊松分布的数据X 的参数的点估计及其区间估计.(3)phat,pci=weibfit(X,alpha)-在显著性水平

38、alpha下,求Weibull分布的数据X 的参数的点估计及其区间估计.返回返回第六十四页,本课件共有77页6.6.假设检验假设检验 在总体服从正态分布的情况下,可用以下命令进行假设检验.(1)总体方差总体方差sigma2已知时,总体均值的检验使用已知时,总体均值的检验使用 z-检验检验 h,sig,ci=ztest(x,m,sigma,alpha,tail)检验数据 x 的关于均值的某一假设是否成立,其中sigma 为已知方差,alpha 为显著性水平,究竟检验什么假设取决于 tail 的取值:tail=0,检验假设“x 的均值等于 m”tail=1,检验假设“x 的均值大于 m”tail=

39、-1,检验假设“x 的均值小于 m”tail的缺省值为 0,alpha的缺省值为 0.05.返回值 h 为一个布尔值,h=1 表示可以拒绝假设,h=0 表示不可以拒绝假设,sig 为假设成立的概率,ci 为均值的 1-alpha 置信区间.第六十五页,本课件共有77页 例例7 Matlab统计工具箱中的数据文件gas.mat.中提供了美国1993年一月份和二月份的汽油平均价格(price1,price2分别是一,二月份的油价,单位为美分),它是容量为20的双样本.假设一月份油价的标准偏差是一加仑四分币(=4),试检验一月份油价的均值是否等于115.解解 作假设:m=115.首先取出数据,用以下

40、命令:load gas然后用以下命令检验 h,sig,ci=ztest(price1,115,4)返回:h=0,sig=0.8668,ci=113.3970 116.9030.检验结果:1.布尔变量h=0,表示不拒绝零假设.说明提出的假设均值115 是合理的.2.sig-值为0.8668,远超过0.5,不能拒绝零假设 3.95%的置信区间为113.4,116.9,它完全包括115,且精度很 高.To MATLAB(liti7)第六十六页,本课件共有77页(2)总体方差总体方差sigma2未知时,总体均值的检验使用未知时,总体均值的检验使用t-检验检验 h,sig,ci=ttest(x,m,al

41、pha,tail)检验数据 x 的关于均值的某一假设是否成立,其中alpha 为显著性水平,究竟检验什么假设取决于 tail 的取值:tail=0,检验假设“x 的均值等于 m”tail=1,检验假设“x 的均值大于 m”tail=-1,检验假设“x 的均值小于 m”tail的缺省值为 0,alpha的缺省值为 0.05.返回值 h 为一个布尔值,h=1 表示可以拒绝假设,h=0 表示不可以拒绝假设,sig 为假设成立的概率,ci 为均值的 1-alpha 置信区间.第六十七页,本课件共有77页返回:h=1,sig=4.9517e-004,ci=116.8 120.2.检验结果:1.布尔变量h

42、=1,表示拒绝零假设.说明提出的假 设油价均值115是不合理的.2.95%的置信区间为116.8 120.2,它不包括 115,故不能接受假设.3.sig-值为4.9517e-004,远小于0.5,不能接受零 假设.To MATLAB(liti8)例例8 试检验例8中二月份油价 Price2的均值是否等于115.解解 作假设:m=115,price2为二月份的油价,不知其方差,故用以下命令检验h,sig,ci=ttest(price2,115)第六十八页,本课件共有77页(3)两总体均值的假设检验两总体均值的假设检验使用使用 t-检验检验 h,sig,ci=ttest2(x,y,alpha,t

43、ail)检验数据 x,y 的关于均值的某一假设是否成立,其中alpha 为显著性水平,究竟检验什么假设取决于 tail 的取值:tail=0,检验假设“x 的均值等于 y 的均值”tail=1,检验假设“x 的均值大于 y 的均值”tail=-1,检验假设“x 的均值小于 y 的均值”tail的缺省值为 0,alpha的缺省值为 0.05.返回值 h 为一个布尔值,h=1 表示可以拒绝假设,h=0 表示不可以拒绝假设,sig 为假设成立的概率,ci 为与x与y均值差的的 1-alpha 置信区间.第六十九页,本课件共有77页返回:h=1,sig=0.0083,ci=-5.8,-0.9.检验结果

44、:1.布尔变量h=1,表示拒绝零假设.说明提出的 假设“油价均值相同”是不合理的.2.95%的置信区间为-5.8,-0.9,说明一月份油 价比二月份油价约低1至6分.3.sig-值为0.0083,远小于0.5,不能接受“油价均 相同”假设.To MATLAB(liti9)例例9 试检验例8中一月份油价Price1与二月份的油价Price2均值是否相同.解解 用以下命令检验h,sig,ci=ttest2(price1,price2)第七十页,本课件共有77页(4)非参数检验:总体分布的检验非参数检验:总体分布的检验Matlab工具箱提供了两个对总体分布进行检验的命令:(1)h=normplot(

45、x)(2)h=weibplot(x)此命令显示数据矩阵x的正态概率图.如果数据来自于正态分布,则图形显示出直线性形态.而其它概率分布函数显示出曲线形态.此命令显示数据矩阵x的Weibull概率图.如果数据来自于Weibull分布,则图形将显示出直线性形态.而其它概率分布函数将显示出曲线形态.返回返回第七十一页,本课件共有77页例例10 一道工序用自动化车床连续加工某种零件,由于刀具损坏等会出现故障.故障是完全随机的,并假定生产任一零件时出现故障机会均相同.工作人员是通过检查零件来确定工序是否出现故障的.现积累有100次故障纪录,故障出现时该刀具完成的零件数如下:459 362 624 542

46、509 584 433 748 815 505 612 452 434 982 640 742 565 706 593 680 926 653 164 487 734 608 428 1153 593 844 527 552 513 781 474 388 824 538 862 659 775 859 755 49 697 515 628 954 771 609 402 960 885 610 292 837 473 677 358 638 699 634 555 570 84 416 606 1062 484 120 447 654 564 339 280 246 687 539 790

47、581 621 724 531 512 577 496 468 499 544 645 764 558 378 765 666 763 217 715 310 851试观察该刀具出现故障时完成的零件数属于哪种分布.第七十二页,本课件共有77页解解 1、数据输入To MATLAB(liti101)2、作频数直方图 hist(x,10)3、分布的正态性检验 normplot(x)4、参数估计:muhat,sigmahat,muci,sigmaci=normfit(x)(看起来刀具寿命服从正态分布)(刀具寿命近似服从正态分布)估计出该刀具的均值为594,方差204,均值的0.95置信区间为 553.

48、4962,634.5038,方差的0.95置信区间为 179.2276,237.1329.To MATLAB(liti104)To MATLAB(liti102)To MATLAB(liti103)第七十三页,本课件共有77页(5)假设检验To MATLAB(liti105)已知刀具的寿命服从正态分布,现在方差未知的情况下,检验其均值 m 是否等于594.结果:h=0,sig=1,ci=553.4962,634.5038.检验结果:1.布尔变量h=0,表示不拒绝零假设.说 明提出的假设寿命均值594是合理的.2.95%的置信区间为553.5,634.5,它 完全包括594,且精度很高.3.si

49、g-值为1,远超过0.5,不能拒绝零假 设.返回返回第七十四页,本课件共有77页1、某校60名学生的一次考试成绩如下:93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 551)计算均值、标准差、极差、偏度、峰度,画出直方图;2)检验分布的正态性;3)若检验符合正态分布,估计正态分布的参数并检验参

50、数.第七十五页,本课件共有77页2、据说某地汽油的价格是每加仑115美分,为了验证这种说法,一位学者开车随机选择了一些加油站,得到某年一月和二月的数据如下:一月:119 117 115 116 112 121 115 122 116 118 109 112 119 112 117 113 114 109 109 118二月:118 119 115 122 118 121 120 122 128 116 120 123 121 119 117 119 128 126 118 1251)分别用两个月的数据验证这种说法的可靠性;2)分别给出1月和2月汽油价格的置信区间;3)给出1月和2月汽油价格差的

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 资格考试

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁