几种常见的分布.ppt

上传人:wuy****n92 文档编号:74759951 上传时间:2023-02-28 格式:PPT 页数:22 大小:960KB
返回 下载 相关 举报
几种常见的分布.ppt_第1页
第1页 / 共22页
几种常见的分布.ppt_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《几种常见的分布.ppt》由会员分享,可在线阅读,更多相关《几种常见的分布.ppt(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023/2/281几种常见的分布2023/2/282分类o连续型随机分布连续型随机分布 正态分布、均匀分布、指数分布、对数正态分布、柯西分布、Gamma分布、瑞利分布、韦伯分布o离散型随机分布离散型随机分布 二项分布、几何分布、超几何分布、泊松分布o三大抽样分布三大抽样分布 卡方分布、F分布、t分布o分布之间的关系分布之间的关系o大数定理、中心极限定理大数定理、中心极限定理2023/2/283一、正态分布(Normal distribution)应用:应用:如果一个量是由许多微小的独立随机因影响的结果,就可以认为这个量具有正态分布。在自然现象中,大量随机变量都服从或近似服从正态分布。EX=A

2、DX=B22023/2/284二、均匀分布(Uniform distribution)应用:应用:在自然情况下,均匀分布极为罕见。在实际问题中,当我们无法区分在区间内取值的随机变量取不同值的可能性有何不同时,我们就可以假定随机变量服从区间上的均匀分布。2023/2/285三、指数分布(Exponential distribution)应用:应用:主要用于描述独立事件发生的时间间隔。自然界中有很多种“寿命”可以用指数分布来描述,如电子元件的寿命、动物的寿命、电话的通话时间、服务系统的服务时间等。2023/2/286四、对数正态分布定义:定义:如果一个随机变量的对数服从正态分布,那么该随机变量服从

3、对数正态分布。应用:应用:金融保险业、投资收益计算等。2023/2/287五、柯西分布(Cauchy distribution)应用:应用:主要应用于物理学中,它是描述受迫共振的微分方程的解。在光谱学中,它用来描述被共振或者其他机制加宽的谱线形状。2023/2/288六、Gamma分布应用:应用:用于描述随机变量X等到第K件事发生所需等候的时间。EX=DX=2023/2/289七、瑞利分布(Rayleigh distribution)定义:定义:当一个随机二维向量的两个分量呈独立的、有着相同的方差的正态分布时,这个向量的模呈瑞利分布。应用:应用:瑞利分布常用于描述平坦衰落信号接收包络或独立多径

4、分量接受包络统计时变特性。如两个正交高斯噪声信号之和的包络服从瑞利分布。2023/2/2810八、韦伯分布(Weibull distribution)o定义:定义:韦氏分布或威布尔分布,是可靠性分析和寿命检验的理论基础。=应用:应用:可靠性和失效分析、极值理论。2023/2/2811九、二项分布(Bernoulli distribution)应用:应用:n 次试验在相同条件下进行,各个观察单位的结果相互独立,且只能具有相互对立的一种结果,二项分布常用于医学领域。当n时,二项分布近似于正态分布。(注:0-1分布是特殊的二项分布)2023/2/2812十、负二项分布(Negative binomi

5、al distribution)定义:定义:已知一个事件在伯努利试验中每次的出现概率是p,在一连串伯努利试验中,一件事件刚好在第r+k次试验出现第r次的概率。取r=1,负二项分布等于几何分布。其概率质量函数为2023/2/2813十一、几何分布定义:定义:在第 n 次伯努利实验,才得到第一次成功的机率。更详细的说是:n次伯努利试验,前 n-1 次皆失败,第 n 次才成功的概率。应用:应用:射击比赛等。2023/2/2814十二、超几何分布定义:定义:在产品质量的不放回抽检中,若N件产品中有M件次品,抽检n件时所得次品数X=k,是一个随机变量:应用:应用:产品质量检测等。(注:在实际应用时,只要

6、N=10n,可用二项分布近似描述不合格品个数。)2023/2/2815十三、泊松分布(Poisson distribution)应用:应用:泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷陷数,显微镜下单位分区内的细菌分布数等。2023/2/2816十四、卡方分布定义:定义:若 k 个随机变量 相互独立,且服从标准正态分布,则随机变量:称为自由度为k的卡方分布,记作:应用:应用:常用于假设检验和置信区间的计算。K2K2023/2/2817十五、F分

7、布oF分布定义:定义:应用:应用:假设检验。2023/2/2818十六、t分布ot分布定义:定义:应用:应用:假设检验。2023/2/2819各种分布之间的关系oGamma分布分布与指数分布、正态分布与指数分布、正态分布当gamma分布分布的形状系数k为正整数时,gamma分布可看作k个独立的指数分布指数分布之和,当k趋向于较大数值时,分布近似于正态分布正态分布。在Gamma分布中:分布中:k=n(正整数)时的gamma分布可以看作n个独立的k=1的gamma分布(即指数分布)之和,按照中心极限定理中心极限定理,独立同分布随机变量之和趋于正态分布。o正态分布正态分布2023/2/2820大数定理o定义:定义:在一个随机事件中,随着试验次数的增加,事件发生的频率趋于一个稳定值;同时在对物理量的测量实践中,大量测定值的算术平均也具有稳定性。当次数很大时,算术平均值接近数学期望;频率以概率收敛于事件的概率。o引申:引申:贝努利定理、小概率事件原理 2023/2/2821中心极限定理定义:定义:在客观实际中有一些随机变量,它们是由大量的随机因素的综合影响所形成的,而其中每一个别因素在总的影响中所起的作用都是微小的,这种随机变量往往近似地服从正态分布。2023/2/2822中心极限定理

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁