《第十章 多传感器信息融合优秀PPT.ppt》由会员分享,可在线阅读,更多相关《第十章 多传感器信息融合优秀PPT.ppt(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第十章 多传感器信息融合第一页,本课件共有26页第一节第一节 概概 述述 传感器信息融合又称数据融合,是对多种信息的获取、传感器信息融合又称数据融合,是对多种信息的获取、表示及其内在联系进行综合处理和优化的技术。传感器信表示及其内在联系进行综合处理和优化的技术。传感器信息融合技术从多信息的视角进行处理及综合,得到各种信息融合技术从多信息的视角进行处理及综合,得到各种信息的内在联系和规律,从而剔除无用的和错误的信息,保息的内在联系和规律,从而剔除无用的和错误的信息,保留正确的和有用的成分,最终实现信息的留正确的和有用的成分,最终实现信息的优化优化。它也为智。它也为智能信息处理技术的研究提供了新的
2、观念。能信息处理技术的研究提供了新的观念。定义定义:将经过集成处理的多传感器信息进行合成,形成将经过集成处理的多传感器信息进行合成,形成一种对外部环境或被测对象某一特征的表达方式一种对外部环境或被测对象某一特征的表达方式。单一。单一传感器只能获得环境或被测对象的部分信息段,而多传感传感器只能获得环境或被测对象的部分信息段,而多传感器信息经过融合后能够完善地、准确地反映环境的特征。器信息经过融合后能够完善地、准确地反映环境的特征。经过融合后的传感器信息具有以下特征:经过融合后的传感器信息具有以下特征:信息冗余性、信息冗余性、信息互补性、信息实时性、信息获取的低成本性信息互补性、信息实时性、信息获
3、取的低成本性。一、概念一、概念第二页,本课件共有26页二、意义及应用二、意义及应用信息融合技术的实现和发展以信息电子学的原理、方法、技术为基础。信息融合系统要采用多种传感器收集各种信息,包括声、光、电、运动、视觉、触觉、力觉以及语言文字等。信息融合技术中的分布式信息处理结构通过无线网络无线网络、有线网络有线网络,智能网络智能网络,宽带智能综合数字网络宽带智能综合数字网络等汇集信息,传给融合中心进行融合。除了自然(物理)信息外,信息融合技术还融合社会类信息,以语言文字为代表,涉及到大规模汉语资料库、语言知识的获取理论与方法、机器翻译、自然语言解释与处理技术等,信息融合采用分形分形、混沌混沌、模糊
4、推理模糊推理、人工神经网络人工神经网络等数学和物理的理论及方法。它的发展方向是对非线性、复杂环境因素的不同性质的信息进行综合、相关,从各个不同的角度去观察、探测世界。1 1、在信息电子学领域、在信息电子学领域 第三页,本课件共有26页2 2、在计算机科学领域、在计算机科学领域 在计算机科学中,目前正开展着并行数据库并行数据库、主动数主动数据库据库、多数据库多数据库的研究。信息融合要求系统能适应变化的外部世界,因此,空间、时间数据库的概念应运而生,为数据融合提供了保障。空间意味着不不同种类的数据来自于不同的空间地点同种类的数据来自于不同的空间地点,时间意味着数数据库能随时间的变化适应客观环境的相
5、应变化据库能随时间的变化适应客观环境的相应变化。信息融合处理过程要求有相应的数据库原理和结构,以便融合随时间、空间变化了的数据。在信息融合的思想下,提出的空间、时间数据库,是计算机科学的一个重要的研究方向。第四页,本课件共有26页3 3、在自动化领域、在自动化领域以各种控制理论为基础,信息融合技术采用模糊控制模糊控制、智能智能控制控制、进化计算进化计算等系统理论,结合生物、经济、社会、军事等领域的知识,进行定性、定量分析。按照人脑的功能和原理进行视觉、听觉、触觉、力觉、知觉、注意、记忆、学习和更高级的认识过程,将空间、时间的信息进行融合,对数据和信息进行自动解释,对环境和态势给予判定。目前的控
6、制技术,已从程序控制进入了建立在信息融合基础上的智能控制。智能控制系统不仅用于军事,还应用于工厂企业的生产过程控制和产供销管理、城市建设规划、道路交通管理、商业管理、金融管理与预测、地质矿产资源管理、环境监测与保护、粮食作物生长监测、灾害性天气预报及防治等涉及宏观、微观和社会的各行各业。第五页,本课件共有26页三、优点三、优点增加了系统的生存能力增加了系统的生存能力扩展了空间覆盖范围扩展了空间覆盖范围扩展了时间覆盖范围扩展了时间覆盖范围提高了可信度提高了可信度降低了信息的模糊度降低了信息的模糊度改善了探测性能改善了探测性能提高了空间分辨率提高了空间分辨率增加了测量空间的维数增加了测量空间的维数
7、第六页,本课件共有26页第二节第二节 传感器信息融合分类和结构传感器信息融合分类和结构 1、组合组合:由多个传感器组合成:由多个传感器组合成平行平行或或互补方式互补方式来获得多组数据输出的来获得多组数据输出的一种处理方法,是一种最基本的方式,涉及的问题有输出方式的一种处理方法,是一种最基本的方式,涉及的问题有输出方式的协调协调、综合综合以及以及传感器的选择传感器的选择。在硬件这一级上应用。在硬件这一级上应用。2、综合综合:信息优化处理中的一种获得明确信息的有效方法。:信息优化处理中的一种获得明确信息的有效方法。例:在虚拟现实技术中,使用两个分开设置的摄像机同时拍摄到一个例:在虚拟现实技术中,使
8、用两个分开设置的摄像机同时拍摄到一个物体的不同侧面的两幅图像,综合这两幅图像可以复原出一个准确的物体的不同侧面的两幅图像,综合这两幅图像可以复原出一个准确的有立体感的物体的图像。有立体感的物体的图像。3、融合融合:当将传感器数据组之间进行相关或将传感器数据与系统内:当将传感器数据组之间进行相关或将传感器数据与系统内部的知识模型进行相关,而产生信息的一个新的表达式。部的知识模型进行相关,而产生信息的一个新的表达式。4、相关相关:通过处理传感器信息获得某些结果,不仅需要单项信息处理,而:通过处理传感器信息获得某些结果,不仅需要单项信息处理,而且需要通过相关来进行处理,获悉传感器数据组之间的关系,从
9、而得到正确且需要通过相关来进行处理,获悉传感器数据组之间的关系,从而得到正确信息,剔除无用和错误的信息。信息,剔除无用和错误的信息。相关处理的相关处理的目的目的:对识别、预测、学习和记忆等过程的信息进行综合:对识别、预测、学习和记忆等过程的信息进行综合和优化。和优化。一、传感器信息融合分类一、传感器信息融合分类第七页,本课件共有26页二、信息融合的结构二、信息融合的结构信息融合的结构分为串联和并联两种信息融合的结构分为串联和并联两种 Sn S2 S1Y1Y2YnC1C2CnYSC1C2Cn(a)串联(b)并联C1,C2,Cn表示n个传感器S1,S2,,Sn表示来自各个传感器信息融合中心的数据y
10、1,y2,yn表示融合中心。第八页,本课件共有26页三、信息融合系统结构的实例三、信息融合系统结构的实例一种雷达测量的信息融合结构局部局部处理器处理器局部局部处理器处理器 外部逻辑外部逻辑中央中央处理器处理器传感器信号传感器信号先验信息修正信息先验信息修正信息传感器故障检测系统第九页,本课件共有26页第三节第三节 传感器信息融合的一般方法传感器信息融合的一般方法 由多种传感器所获得的客观环境(即被测对象)的多组数据就是客观环境按照某种映射关系映射关系形成的像像,信息融合就是通过像求解原像像求解原像,即对客观环境加以了解。用数学语言描述就是,所有传感器的全部信息,也只能描述环境的某些方面的特征,
11、而具有这些特征的环境却有很多,要使一组数据对应惟一的环境(即上述映射为一一映射),就必须对映射的原像和映射本身加约束条件,使问题能有惟一的解。嵌入约束法最基本的方法:Bayes估计估计和卡尔曼滤波卡尔曼滤波嵌入约束法、证据组合法、人工神经网络法嵌入约束法、证据组合法、人工神经网络法 一、嵌入约束法一、嵌入约束法第十页,本课件共有26页1.Bayes估计估计是融合静态环境中多传感器低层数据融合静态环境中多传感器低层数据的一种常用方法。其信息描述为概率分布,适用于具有可加高斯噪声的不确定性可加高斯噪声的不确定性信息信息。假定完成任务所需的有关环境的特征物用向量f表示,通过传感器获得的数据信息用向量
12、d来表示,d和f都可看作是随机向量。信息融合的任务就是由数据d推导和估计环境f。假设p(f,d)为随机向量f和d的联合概率分布密度函数,则p(f|d)表示在已知d的条件下,f关于d的条件概率密度函数p(f|d)表示在已知f 的条件下,d关于f的条件概率密度函数p(d)和p(f)分别表示d和f的边缘分布密度函数已知d时,要推断f,只须掌握p(f|d)即可,即上式为概率论中的Bayes公式,是嵌入约束法的核心。第十一页,本课件共有26页信息融合通过数据信息数据信息d做出对环境f的推断,即求解p(f|d)。由Bayes公式知,只须知道p(f|d)和p(f)即可。因为p(d)可看作是使p(f|d)p(
13、f)成为概率密度函数的归一化常数,p(d|f)是在已知客观环境变量f的情况下,传感器得到的d关于f的条件密度。当环境情况和传感器性能已知时,p(f|d)由决定环境和传感器原理的物理规律完全确定。而p(f)可通过先验知识先验知识的获取和积累,逐步渐近准确地得到,因此,一般总能对p(f)有较好的近似描述。在嵌入约束法中,反映客观环境和传感器性能与原理的各种约束条件主要体现在p(f|d)中,而反映主观经验知识的各种约束条件主要体现在p(f)中。在传感器信息融合的实际应用过程中,通常的情况是在某一时刻从多种传感器得到一组数据信息d,由这一组数据给出当前环境的一个估计f。因此,实际中应用较多的方法是寻找
14、最大后验估计g,即第十二页,本课件共有26页即最大后验估计是在已知数据为d的条件下,使后验概率密度p(f)取得最大值得点g,根据概率论,最大后验估计g满足当p(f)为均匀分布时,最大后验估计g满足 此时,最大后验概率最大后验概率也称为极大似然估计。当传感器组的观测坐标一致时,可以用直接法对传感器测量数据进行融合。在大多数情况下,多传感器从不同的坐标框架对环境中同一物体进行描述,这时传感器测量数据要以间接的方式采用Bayes估计进行数据融合。间接法要解决的问题是求出与多个传感器读数相一致的旋转矩阵R和平移矢量H。第十三页,本课件共有26页在传感器数据进行融合之前,必须确保测量数据代表同一在传感器
15、数据进行融合之前,必须确保测量数据代表同一实物,即要对传感器测量进行一致性检验。常用以下距离实物,即要对传感器测量进行一致性检验。常用以下距离公式来判断传感器测量信息的一致:公式来判断传感器测量信息的一致:式中式中x1和和x2为两个传感器测量信号,为两个传感器测量信号,C为与两个传感为与两个传感器相关联的方差阵,当距离器相关联的方差阵,当距离T小于某个阈值时,两个传小于某个阈值时,两个传感器测量值具有一致性。这种方法的实质是剔除处于误差感器测量值具有一致性。这种方法的实质是剔除处于误差状态的传感器信息而保留状态的传感器信息而保留“一致传感器一致传感器”数据计算融合值。数据计算融合值。第十四页,
16、本课件共有26页2.卡尔曼滤波卡尔曼滤波(KF)用于实时融合动态的低层次冗余传感器数据实时融合动态的低层次冗余传感器数据,该方法用测量模型的统计特性,递推决定统计意义下最优融合数据合计。如果系统具有线性动力学模型,且系统噪声和传感器噪声可用高斯分布的白噪声模型来表示,KF为融合数据提供惟一的统计意义下的最优估计,KF的递推特性使系统数据处理不需大量的数据存储和计算。KF分为分散卡尔曼滤波散卡尔曼滤波(DKF)和扩展卡尔曼滤波扩展卡尔曼滤波(EKF)。DKF可实现多传感器数据融合完全分散化,其优点优点:每个传感器节点失效不会导致整个系统失效。而EKF的优点优点:可有效克服数据处理不稳定性或系统模
17、型线性程度的误差对融合过程产生的影响。嵌入约束法传感器信息融合的最基本方法之一,其缺点缺点:需要对多源数据的整体物理规律有较好的了解,才能准确地获得p(d|f),但需要预知先验分布p(f)。第十五页,本课件共有26页二、证据组合法二、证据组合法证据组合法认为完成某项智能任务是依据有关环境某方面的信息做出几种可能的决策几种可能的决策,而多传感器数据信息在一定程度上反映环境这方面的情况。因此,分析每一数据作为支持某种决策证据的支持程度,并将不同传感器数据的支持程度进行组合,即证据组合,分析得出现有组合证据支持程度最大的决策作为信息融合的结果。证据组合法是对完成某一任务的需要而处理多种传感器的数据信
18、息,完成某项智能任务,实际是做出某项行动决策。它先对单个传感器数据信息每种可能决策的支持程度给出度量(即数据信息作为证据对决策的支持程度),再寻找一种证据组合方法或规则,在已知两个不同传感器数据(即证据)对决策的分别支持程度时,通过反复运用组合规则,最终得出全体数据信息的联合体对某决策总的支持程度。得到最大证据支持决策,即信息融合的结果。第十六页,本课件共有26页证据组合法较嵌入约束法优点:(1)对多种传感器数据间的物理关系不必准确了解,即无须准确地建立多种传感器数据体的模型;(2)通用性好,可以建立一种独立于各类具体信息融合问题背景形式的证据组合方法,有利于设计通用的信息融合软、硬件产品;(
19、3)人为的先验知识可以视同数据信息一样,赋予对决策的支持程度,参与证据组合运算。常用证据组合方法:l概率统计方法概率统计方法lDempster-Shafer证据推理证据推理利用证据组合进行数据融合的关键关键在于:u选择合适的数学方法描述证据证据、决策决策和支持程度支持程度等概念u建立快速、可靠并且便于实现的通用证据组合算法结构算法结构第十七页,本课件共有26页1.概率统计方法概率统计方法假设一组随机向量x1,x2,xn分别表示n个不同传感器得到的数据信息,根据每一个数据xi可对所完成的任务做出一决策di。xi的概率分布为pai(xi),ai为该分布函数中的未知参数,若参数已知时,则xi的概率分
20、布就完全确定了。用非负函数L(ai,di)表示当分布参数确定为ai时,第i个信息源采取决策dj时所造成的损失函数。在实际问题中,ai是未知的,因此,当得到xi时,并不能直接从损失函数中定出最优决策。先由xi做出ai的一个估计,记为ai(xi),再由损失函数L ai(xi),di决定出损失最小的决策。其中利用xi估计ai的估计量ai(xi)有很多种方法。概率统计方法适用于分布式传感器目标识别分布式传感器目标识别和跟踪信息融跟踪信息融合问题合问题第十八页,本课件共有26页2.Dempster-Shafer证据推理证据推理(简称简称D-S推理推理)假设F为所有可能证据所构成的有限集,为集合F中的某个
21、元素即某个证据,首先引入信任函数B(f)0,1表示每个证据的信任程度:从上式可知,信任函数是概率概念的推广,因为从概率论的知识出发,上式应取等号。引入基础概率分配函数m(f)0,1 由基础概率分配函数定义与之相对应的信任函数:第十九页,本课件共有26页当利用N个传感器检测环境M个特征时,每一个特征为F中的个元素。第i个传感器在第k-1时刻所获得的包括k1时刻前关于第j个特征的所有证据,用基础概率分配函数表示,其中i=1,2,m。第i个传感器在第k时刻所获得的关于第j个特征的新证据用基础概率分配函数表示。由和可获得第i个传感器在第k时刻关于第j个特征的联合证据。类似地,利用证据组合算法,由和可获
22、得在k时刻关于第j个特征的第i个传感器和第i+1个传感器的联合证据。如此递推下去,可获得所有N个传感器在k时刻对j特征的信任函数,信任度最大的即为信息融合过程最终判定的环境特征。D-S证据推理优点优点:算法确定后,无论是静态还是时变的动态证据组合,其具体的证据组合算法都有一共同的算法结构。但其缺点缺点:当对象或环境的识别特征数增加时,证据组合的计算量会以指数速度增长。第二十页,本课件共有26页三、人工神经网络法三、人工神经网络法通过模仿人脑的结构和工作原理,设计和建立相应的机器和模型并完成一定的智能任务智能任务。神经网络根据当前系统所接收到的样本的相似性,确定分类标准。这种确定方法主要表现在网
23、络权值网络权值分布上,同时可采用神经网络特定的学习算法学习算法来获取知识,得到不确定性推理机制。神经网络多传感器信息融合的实现,分三个重要步骤:根据智能系统要求及传感器信息融合的形式,选择其拓扑结构;各传感器的输入信息综合处理为一总体输入函数,并将此函数映射定义为相关单元的映射函数,通过神经网络与环境的交互作用把环境的统计规律反映网络本身结构;对传感器输出信息进行学习、理解,确定权值的分配,完成知识获取信息融合,进而对输入模式做出解释,将输入数据向量转换成高层逻辑(符号)概念。第二十一页,本课件共有26页基于神经网络的传感器信息融合特点:具有统一的内部知识表示形式,通过学习算法可将网络获得的传
24、感器信息进行融合,获得相应网络的参数,并且可将知识规则转换成数字形式,便于建立知识库;利用外部环境的信息,便于实现知识自动获取知识自动获取及并行并行联想推理联想推理;能够将不确定环境的复杂关系,经过学习推理学习推理,融合为系统能理解的准确信号;由于神经网络具有大规模并行处理信息能力,使得系统信息处理速度很快。第二十二页,本课件共有26页第四节第四节 传感器信息融合的实例传感器信息融合的实例一一.信息融合的民事应用领域信息融合的民事应用领域u工业过程监视及工业机器人工业过程监视及工业机器人u遥感与金融系统遥感与金融系统u空中交通管制与病人照顾系统空中交通管制与病人照顾系统u船舶避碰与交通管制系统
25、船舶避碰与交通管制系统u生物特征的身份识别生物特征的身份识别二二.信息融合技术军事上的应用信息融合技术军事上的应用u采用多传感器的自主式武器系统和自备式运载器采用多传感器的自主式武器系统和自备式运载器u情报收集系统情报收集系统u采用多传感器进行截获、跟踪和指挥制导的火控系统采用多传感器进行截获、跟踪和指挥制导的火控系统u军事力量的指挥和控制站军事力量的指挥和控制站u敌情指示和预警系统敌情指示和预警系统第二十三页,本课件共有26页第四节第四节 传感器信息融合的实例传感器信息融合的实例1.1.机器人中的传感器信息融合机器人中的传感器信息融合 控制和信息融合计算机自主移动装配机器人装配机械手力觉传感器触觉传感器视觉传感器超声波传感器激光测距传感器 多传感器信息融合自主移动装配机器人第二十四页,本课件共有26页2.2.舰船上的传感器信息融合舰船上的传感器信息融合 行扫描处理器红外探测器 直流偏压AGC搜索器万向支架惯性导航系统图像摄像机万向支架图像处理共享存储器数据融合处理器环境控制显示记录人机界面图像摄像机传感器 海军舰船传感器信息融合系统第二十五页,本课件共有26页传感器信号处理ADC单片机显示第二十六页,本课件共有26页