《2019八年级数学上册 第12章 全等三角形备课教案 (新版)新人教版.doc》由会员分享,可在线阅读,更多相关《2019八年级数学上册 第12章 全等三角形备课教案 (新版)新人教版.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1第十二章第十二章单元第十二章课 题全等三角形教材分析本章的主要内容是全等三角形,主要学习全等三角形的性质及各种三角形全等的判定方法,同时学会如何利用全等三角形进行证明。本章分三节,第一节介绍全等形,包括三角形全等的概念,全等三角形的性质。第二节介绍一般三角形全等的判定方法,及直角三角形全等的一个特殊的判定方法。在第三节,利用三角形全等的判定方法证明了角平分线的性质,并利用角的平分线的性质进行证明。学生已学过线段、角、相交线、平行线以及三角形的有关知识,七年级两册教科书中安排了一些说理的内容,这些为学习全等三角形的有关内容作好了准备。通过本章的学习,可以丰富和加深学生对已学图形的认识(如两个三
2、角形满足一定的条件就完全一样了,角的平分线上的一点到角的两边的距离相等),同时为学习其他图形知识打好基础。全等三角形是研究图形的重要工具,学生只有掌握好全等三角形的内容,并且能灵活地运用它们,才能学好四边形、圆等内容。从本章开始,要使学生理解证明的基本过程,掌握用综合法证明的格式。这既是本章的重点,也是教学的难点。教科书把研究三角形全等条件的重点放在第一个条件(“边边边”条件)上,使学生以“边边边”条件为例,理解什么是三角形的判定,怎样判定。在掌握了“边边边”条件的基础上,使学生学会怎样运用“边边边”条件进行推理论证,怎样正确地表达证明过程。“边边边”条件掌握好了,再学习其他条件就不困难了。运
3、用三角形全等的条件可以判定两个直角三角形全等。还可以利用“斜边和一条直角边对应相等的两个直角三角形全等”判定两个直角三角形全等。本章中这个判定方法是作为基本事实(公理)提出来的,也是通过画图和实验,使学生确信它的正确性。在“角的平分线的性质”一节中,介绍了角的平分线的作法,以及“角的平分线上的点到角的两边的距离相等”“角的内部到角的两边的距离相等的点在角的平分线上”两个结论。教科书用三角形全等证明了前一个结论,并结合证明过程总结了证明一个几何命题的一般步骤。这两个结论是互逆定理。为了保证学生在本章学好简单证明的重点,本章暂不介绍互逆命题、互逆定理等内容,这些内容在八年级下册“勾股定理”一章中介
4、绍。本节例题让学生证明三角形两条对角线的交点到三角形三边的距离相等,并进一步让学生得出这个交点在第三条角平分线上,即三角形的三条角平分线交于一点。这也为学生今后在“圆”一章学习内心作好了准备。2学情分 析八年级学生正处在青春期,学生内心浮躁,相当女生空间想象、逻辑推理能力较差,给本章的推理证明增加了难度。切两班均存在成绩分化想象,两个班级男生反应快思路清但是较为粗心,而女生缺截然相反,两个班级均存在不同程度的抄袭作业想象。为减小男女生学习差距,课堂教学中应该加大对女生的关注和帮助,充分利用附加自习时间对其辅导,同时加强作业抄袭处罚力度,杜绝不良习惯的恶化。教学目标1了解全等三角形的概念和性质,
5、能够准确地辨认全等三角形中的对应元素。2探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式。3了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明。3教学措施1、注重探索结论在“三角形全等的判定”一节设计了 8 个探究,让学生经历三角形全等条件的探索过程,突出体现新教材的设计思想。2、注重推理能力的培养开始阶段,证明的方向明确,过程简单,书写容易规范化。这一阶段要求学生体会例题的证明思路及格式,然后再逐步增加题目的复杂程度,小步前进,每一步都为下一步做准备,下一步又注意复习前一步训练的内容。在不同的阶段,安排不同的练习内容,突出一个重
6、点,每个阶段都提出明确要求,便于教师掌握。先让学生会证明两个三角形全等,然后安排通过证明三角形全等,证明两条线段或两个角相等的问题,从而熟悉证明的步骤和方法。在此之后安排的问题涉及以前学过的平行线等内容,重点培养学生分析问题、根据需要选择有关的结论去证明的能力。注重分析思路,让学生学会思考问题,注重书写格式,让学生学会清楚地表达思考的过程。例如,在“三角形全等的判定”一节证明例 1 的结论“ABDACD”以前,首先指出证题的思路:“要证ABDACD,可看这两个三角形的三条边是否对应相等。”为了清楚地表达上述思考过程,引入“”“”及综合法证明的格式,把证明的过程简明地表达出来。3、注重联系实际在“全等三角形”一节,教科书从实际例子引入全等形的概念,并让学生举出一些例子。这样做既可以使学生易于理解相关概念,也可以调动他们学习的积极性。又如,从分析平分角的仪器的原理引入角的平分线的画法。再如,通过确定集贸市场的位置的问题引出“角的内部到角的两边的距离相等的点在角的平分线上”的结论,使学生看到理论来自实际的需要。4教学反思