《环境工程原理第09章吸附课件.ppt》由会员分享,可在线阅读,更多相关《环境工程原理第09章吸附课件.ppt(99页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第九章 吸 附 第九章 吸附 第一节 吸附分离操作的基本概念第二节 吸附剂 第三节 吸附平衡第四节 吸附动力学第五节 吸附操作与吸附穿透曲线本章主要内容吸附操作是通过多孔固体物质与某一混合组分体系(气体或液体)接触,有选择地使体系中的一种或多种组分附着于固体表面,从而实现特定组分分离的操作过程。被吸附到固体表面的组分称为吸附质吸附吸附质的多孔固体称为吸附剂吸附质附着到吸附剂表面的过程称为吸附吸附质从吸附剂表面逃逸到另一相的过程称为解吸吸附过程发生在“气固”或“液固”非均相界面 基本术语第一节 吸附分离操作的基本概念吸附分离过程的适用范围:吸附分离是利用混合物中各组分与吸附剂间结合力强弱的差别,
2、即各组分在固相(吸附剂)与流体间分配不同的性质使混合物中难吸附与易吸附组分分离。适宜的吸附剂对各组分的吸附可以有很高的选择性,故特别适用于用精馏、吸收等方法难以分离的混合物的分离,以及气体与液体中微量杂质的去除。吸附操作条件比较容易实现。吸附操作缺点,主要是理论尚不够完善成熟。第一节 吸附分离操作的基本概念按作用力性质分类:分物理吸附和化学吸附物理吸附:吸附质分子与吸附剂表面分子间存在的范德华力所引起的,也称为范德华吸附。吸附热较小(放热过程,吸附热在数值上与冷凝热相当),可在低温下进行;过程是可逆的,易解吸;相对没有选择性,可吸附多种吸附质;分子量越大,分子引力越大,吸附量越大;可形成单分子
3、吸附层或多分子吸附层。一、吸附分离操作的分类第一节 吸附分离操作的基本概念化学吸附:又称活性吸附,是由吸附剂和吸附质之间发生化学反应而引起的,其强弱取决于两种分子之间化学键力的大小。如石灰吸附CO2CaCO3吸附热大,一般在较高温下进行;具有选择性,单分子层吸附;化学键力大时,吸附不可逆。第一节 吸附分离操作的基本概念、化学吸附热与化学反应热相近,比物理吸附热大得多。如二氧化碳和氢在各种吸附剂上的化学吸附热为83740Jmol和62800Jmol,而这两种气体的物理吸附热约为25120Jmol和8374Jmol。、化学吸附有较高的选择性。如氯可以被钨或镍化学吸附。物理吸附则没有很高的选择性,它
4、主要取决于气体或液体的物理性质及吸附剂的特性。、化学吸附时,温度对吸附速率的影响较显著,温度升高则吸附速率加快,因其是一个活化过程,故又称活化吸附。而物理吸附即使在低温下,吸附速率也可能较大,因它不属于活化吸附。、化学吸附总是单分子层或单原子层,而物理吸附则不同,低压时,一般是单分子层,但随着吸附质分压增大,吸附层可能转变成多分子层。第一节 吸附分离操作的基本概念化学吸附化学键力交换吸附静电引力物理吸附分子间力吸附剂表面特征表面能降低,为放热反应;吸附无选择性,分子引力随分子量增大而增加;无化学反应发生。第一节 吸附分离操作的基本概念按吸附剂再生方法分类:变温吸附和变压吸附按原料组成分类:大吸
5、附量分离和杂质去除按分离机理分类:位阻效应、动力学效应和平衡效应第一节 吸附分离操作的基本概念二、吸附分离操作的应用吸附分离操作的应用范围很广,既可以对气体或液体混合物中的某些组分进行大吸附量分离,也可以去除混合物中的痕量杂质。日常生活:木炭吸湿、吸臭;防腐剂;吸湿剂(硅胶)第九章第一节 吸附分离操作的基本概念 第一节 吸附分离操作的基本概念化工领域:产品的分离提纯,如制糖品工业,用活性炭处理糖液,吸附其中杂质,得到洁白的产品。环境领域:水:脱色脱臭,有害有机物的去除,金属离子,氮、磷空气:脱湿,有害气体,脱臭特别适合于低浓度混合物的分离第一节 吸附分离操作的基本概念给水处理u 嗅、味的吸附净
6、化;u 微量污染物的吸附净化。废水处理u 典型有机污染物的吸附回收(酚、苯等);u 组合工艺的达标把关措施;应用第一节 吸附分离操作的基本概念活性炭有吸附汞和汞化合物的性能,但因其吸附能力有限,只适宜于处理含汞量低的废水。炼油厂、印染厂废水的深度处理某炼油厂含油废水,经隔油,气浮和生物处理后,再经砂滤和活性炭过滤深度处理。废水的含酚量从0.1mg/L(生物处理后)降至0.005mg/L,氰从0.19mg/L降至0.048mg/L,COD从85mg/L降至18mg/L。第一节 吸附分离操作的基本概念常用于浓度低,毒性大的有害气体的净化,但处理的气体量不宜过大;对有机溶剂蒸汽具有较高的净化效率;当
7、处理的气体量较小时,用吸附法灵活方便。脱除水分、有机蒸汽、恶臭、脱除水分、有机蒸汽、恶臭、HF、SO2、NOX等。等。气体处理第一节 吸附分离操作的基本概念一、常用吸附剂的主要特性 二、几种常用的吸附剂本节的主要内容第二节 吸附剂吸附容量大:由于吸附过程发生在吸附剂表面,所以吸附容量取决于吸附剂表面积的大小。选择性高:对要分离的目的组分有较大的选择性。稳定性好:吸附剂应具有较好的热稳定性,在较高温度下解吸再生其结构不会发生太大的变化。同时,还应具有耐酸碱的良好化学稳定性。适当的物理特性廉价易得 具有一定吸附能力的多孔物质都可以作吸附剂.一、常用吸附剂的主要特性第二节 吸附剂二、重要吸附剂 活性
8、炭、活性炭纤维;吸附树脂;特殊吸附剂:活性氧化铝、硅胶、沸石分子筛;其它吸附剂:褐煤、煤灰、煤灰渣等。第二节 吸附剂(一)活性炭活性炭是应用最为广泛的吸附剂。是由煤或木质原料加工得到的产品,通常一切含碳的物料,如煤、木材、果核、秸秆等都可以加工成黑炭,经活化后制成活性炭。炭化:把原料热解成炭渣,温度:200600度活化:形成发达的细孔。两种办法:气体法:通入水蒸气,温度在8001000度;药剂法:加入氯化锌、硫酸、磷酸等比表面积:5001700m2/g第二节 吸附剂比表面积越大,吸附量越大:但应注意对一些大分子,微孔所提供的比表面积基本上不起作用。活性炭细孔分布情况:微孔:2nm,占总比表面9
9、5:主要支配吸附量过渡孔:2-100nm,5:起通道和吸附作用大孔:100-10000nm,不足1:主要起通道作用,影响吸附速度。第二节 吸附剂 活性炭的优点:是吸附容量大,抗酸耐碱、化学稳定性好,解吸容易,在高温下进行解吸再生时其晶体结构不发生变化,热稳定性高,经多次吸附和解吸操作,仍能保持原有的吸附性能。活性炭常用于溶剂回收,溶液脱色、除臭、净制等过程。是当前应用最普遍的吸附剂。第二节 吸附剂(二)活性炭纤维活性炭纤维吸附能力比一般活性炭要高110倍。活性炭纤维分为两种:(1)将超细活性炭微粒加入增稠剂后与纤维混纺制成单丝,或用热熔法将活性炭粘附于有机纤维或玻璃纤维上,也可以与纸浆混粘制成
10、活性炭纸。(2)以人造丝或合成纤维为原料,与制备活性炭一样经过炭化和活化两个阶段,加工成具有一定比表面积和一定孔分布结构的活性炭纤维。第二节 吸附剂(三)硅胶是一种坚硬无定形链状或网状结构的硅酸聚合物颗粒硅胶的化学式:SiO2nH20用硫酸处理硅酸钠水溶液,生成凝胶。水洗除去硫酸钠后经干燥,便可得到玻璃状的硅胶。硅胶是极性吸附剂,难于吸附非极性物质,易于吸附极性物质(如水、甲醇等)吸湿,高湿度气体的干燥。第二节 吸附剂(四)活性氧化铝化学式:Al2O3nH2O含水氧化铝加热脱水制成的一种极性吸附剂。与硅胶相比,具有良好的机械强度比表面积约为200300m2/g,对水分有极强的吸附能力。主要用于
11、气体和液体的干燥、石油气的浓缩与脱硫的吸附。第二节 吸附剂(五)沸石分子筛每一种分子筛都有相对均一的孔径,其大小随分子筛种类的不同而异。强极性吸附剂,对极性分子如H2O、CO2、H2S等有很强的亲和力,对氨氮的吸附效果好,而对有机物的亲和力较弱。第二节 吸附剂 具有特定的均匀一致的孔穴尺寸,多孔性的硅酸铝骨架结构。比表面约为8001000m2/g。这些骨架结构里面有空洞,即所谓“窗口”,窗口的尺寸就限制了可以进入的分子大小。比它小的分子可以进入,比它大的分子就被拒于“窗外”。这样,它只能允许比其微孔孔径小的分子吸附上去,比其大的分子则不能进入,有分子筛的作用,故称为分子筛。第二节 吸附剂分子筛
12、(合成沸石)一般可用 式表示的含水硅酸盐。其中M表示金属离子,多数为钠、钾、钙,也可以是有机胺或复合离子。n表示复合离子的价数,y和w分别表示SiO4和H2O的分子数,y又称为硅铝比,硅铝比为2左右的称为A型分子筛,3左右的称为X型分子筛,3以上称为Y型分子筛。根据原料配比、组成和制造方法不同,可以制成不同孔径(一般从3到8)和形状(圆形、椭圆形)的分子筛。分子筛是极性吸附剂,对极性分子,尤其对水具有很大的亲和力。由于分子筛突出的吸附性能,使得它在吸附分离中有着广泛的应用,主要用于各种气体和液体的干燥,芳烃或烷烃的分离及用作催化剂及催化剂载体等。第二节 吸附剂吸附剂的选择如何选择适宜的吸附剂?
13、需要根据被分离对象、分离条件和吸附剂本身的特点确定需要进行试验研究第二节 吸附剂3、吸附剂的再生及方法:当吸附进行一定时间后吸附剂的表面就会被吸附物所覆盖,使吸附能力急剧下降,此时就需将被吸附物脱附,使吸附剂得到再生。吸附剂的再生,即吸附剂脱附,通常采用的方法:提高温度或降低吸附质在气相中的分压,这样的结果:吸附质将以原来的形态从吸附剂上回到气相或液相,这种现象称为“脱附”,所以物理吸附过程是可逆的。吸附分离过程正是利用物理吸附的这种可逆性来实现混合物的分离。第二节 吸附剂(1)降低压力吸附过程与气相的压力有关。压力高,吸附进行得快,脱附进行得慢。当压力降低时,脱附现象开始显著。所以操作压力降
14、低后,被吸附的物质就会脱离吸附剂表面返回气相。有时为了脱附彻底,甚至采用抽真空的办法。这种改变压力的再生操作,在变压吸附中广为应用。如吸附分离高纯度氢,先是在 1.374.12 MPa压力下吸附,然后在常压下脱附,从而可得到高纯度氢,吸附剂也得到再生。变压吸附根据系统操作压力变化不同,变压吸附循环可以是常压吸附、真空解吸,加压吸附、常压解吸,加压吸附、真空解吸等几种方法。第二节 吸附剂(2)升高温度吸附为放热过程。从热力学观点可知,温度降低有利于吸附,温度升高有利于脱附。这是因为分子的动能随温度的升高而增加,使吸附在固体表面上的分子不稳定,不易被吸附剂表面的分子吸引力所控制,也就越容易逸入气相
15、中去。变温吸附吸附操作通常是在低温下进行,然后提高操作温度使被吸附组分脱附。通常用水蒸汽直接加热吸附剂使其升温解吸,解吸物与水蒸汽冷凝后分离。吸附剂则经间接加热升温干燥和冷却等阶段组成变温吸附过程,吸附剂循环使用。第二节 吸附剂(3)通气吹扫将吸附剂所不吸附或基本不吸附的气体通入吸附剂床层,进行吹扫,以降低吸附剂上的吸附质分压,从而达到脱附。当吹扫气的量一定时,脱附物质的量取决于该操作温度和总压下的平衡关系。第二节 吸附剂(4)置换脱附向床层中通入另一种流体,当该流体被吸附剂吸附的程度较吸附质弱时,通入的流体就将吸附质置换与吹扫出来,这种流体称为脱附剂。如果通入的脱附剂,其被吸附程度比吸附质强
16、时,则纯属置换脱附,否则就兼有吹扫作用。脱附剂被吸附的能力越强,则吸附质脱附就越彻底。这种脱附剂置换脱附的方法特别适用于热敏性物质。当然,采用置换脱附时,还需将脱附剂进行脱附。溶剂置换 在恒温恒压下,已吸附饱和的吸附剂可用溶剂将床层中已吸附的吸附质冲洗出来,同时使吸附剂解吸再生。常用的溶剂有水、有机溶剂等各种极性或非极性物质。第二节 吸附剂一、单组分气体吸附二、双组分气体吸附三、液相吸附本节的主要内容第三节 吸附平衡 在一定条件下,当流体(气体或液体)和吸附剂接触,流体中的吸附质将被吸附剂所吸附。吸附速度解吸速度当吸附速度和解吸速度相等时,流体中吸附质浓度不再改变时吸附平衡吸附剂吸附能力用吸附
17、量q表示。吸附平衡与平衡吸附量第三节 吸附平衡 1、吸附平衡:在一定温度和压力下,当流体(气体或液体)与固体吸附剂经长时间充分接触后,吸附质在流体相和固体相中的浓度达到平衡状态,称为吸附平衡。2、吸附过程的方向和极限:吸附平衡关系决定了吸附过程的方向和极限,是吸附过程的基本依据。若流体中吸附质浓度高于平衡浓度,则吸附质将被吸附,若流体中吸附质浓度低于平衡浓度,则吸附质将被解吸,最终达吸附平衡,过程停止。3、吸附平衡的影响因素:单位质量吸附剂的平衡吸附量 受到许多因素的影响,如吸附剂的物理结构(尤其是表面结构)和化学组成,吸附质在流体相中的浓度,操作温度等。第三节 吸附平衡(一)吸附平衡理论一、
18、单组分气体吸附不同温度下NH3在木炭上的吸附等温线第三节 吸附平衡 q=f(p,T)(9.3.1)1.弗兰德里希(Freunlich)方程:q平衡吸附量,L/kgk和吸附剂种类、特性、温度有关的常数n常数,和温度有关p吸附质气相中的平衡分压,Pa随着p增大,吸附量q随之增加。但p增加到一定程度后,q不再变化。Freundlich方程为经验公式。压力范围不能太宽,低压或高压区域不能得到满意的实验拟合结果。第三节 吸附平衡(9.3.2)弗兰德里希公式参数的求解:对吸附等温式两边取对数:k双对数坐标1/n1/n越小,说明吸附可在相当宽的浓度范围下进行。一般认为1/n=0.10.5时容易吸附第三节 吸
19、附平衡 2.朗格谬尔(langmuir)公式方程推导的基本假定:吸附剂表面性质均一,每一个具有剩余价力的表面分子或原子吸附一个气体分子。吸附质在吸附剂表面为单分子层吸附。吸附是动态的,被吸附分子受热运动影响可以重新回到气相。吸附过程类似于气体的凝结过程,脱附类似于液体的蒸发过程吸附在吸附剂表面的吸附质分子之间无作用力。第三节 吸附平衡 设吸附表面覆盖率为,则可以表示为:气体的脱附速度与成正比,可以表示为:kd 气体的吸附速度与剩余吸附面积(1)和气体分压成正比,可以表示为:ka p(1)qm为吸附剂表面所有吸附点均被吸附质覆盖时的吸附量,即饱和吸附量。第三节 吸附平衡(9.3.3)吸附达到平衡
20、时,吸附速度与脱附速度相等,则:整理后可得单分子层吸附的Langmuir方程:p吸附质的平衡分压,Paq,qm分别为吸附量和单分子层吸附容量,L/kgk1Langmuir常数,与吸附剂和吸附质的性质和温度有关,该值越大表示吸附剂的吸附能力越强。第三节 吸附平衡(9.3.4)(9.3.5)如何求解langmuir公式参数?1/p1/q1/qm1/(k1qm)或第三节 吸附平衡 公式变换得:例题9.3.1273.15K时,1g活性炭在不同压力下吸附氮气的体积如下表所示(已换算成标准状态下的体积),试证明氮气在活性炭上的吸附服从Langmuir等温方程式,并求吸附常数。第三节 吸附平衡 p/Pa52
21、3.91730.23057.94533.57495.5q/(mL.g-1)0.9873.045.087.0410.31当p很小时,则:q=k1qmp呈亨利定律,即吸附量与气体的平衡分压成正比。当p时,q=qm此时,吸附量与气体分压无关,吸附剂表面被占满,形成单分子层。Langmuir公式分析:第三节 吸附平衡 3.BET公式由Brunaner,Emmett和Teller3人提出的。基于多分子层吸附,在Langmuir公式基础上推导出来的。假设:吸附分子在吸附剂上是按各个层次排列的。吸附过程取决于范德华引力,吸附质可以在吸附剂表面一层一层地累叠吸附。每一层吸附都符合Langmuir公式。第三节
22、吸附平衡 p0吸附质组分的饱和蒸气压qm吸附剂表面完全被吸附质单分子层覆盖时的吸附量kb常数,与温度、吸附热和冷凝热有关。BET公式中的参数qm和kb可以通过实验测定。通常只适用于比压(p/p0)约在0.050.35比压小于0.35,毛细凝聚变得显著,破坏多层物理吸附平衡。第三节 吸附平衡(9.3.6)BET模型方程与Langmuir方程的联系BET吸附模型是在Langmuir模型基础上建立起来的。Langmuir模型的前提条件是假设在吸附剂表面上只形成单分子层,而BET模型吸附剂表面上可扩展到多分子层吸附;若吸附质的平衡分压远小于其饱和蒸汽压,即 远远小于 则:令,即为Langmuir方程,
23、所以BET方程是广泛的Langmuir方程二、双组分气体吸附混合气体中有两种组分发生吸附时,每种组分吸附量均受另一种组分的影响。活性炭对乙烷的吸附较多,而硅胶对乙烯的吸附较多。乙烷-乙烯混合气体的平衡吸附(25,101.325kPa)第三节 吸附平衡 各组分的吸附量qA0、qB0分别为各组分单独存在且压力等于双组分总压时的平衡吸附量qA、qB为混合气体吸附平衡时吸附量第三节 吸附平衡(9.3.12)由吸附平衡、吸附容量确定吸附剂的用量;选择最佳的吸附剂;吸附剂的最佳吸附条件;不同吸附剂的吸附特性对比;混合吸附质的竞争吸附比较。三、吸附模型的工程意义第三节 吸附平衡 吸附分离过程的适用范围:吸附
24、分离是利用混合物中各组分与吸附剂间结合力强弱的差别,即各组分在固相(吸附剂)与流体间分配不同的性质使混合物中难吸附与易吸附组分分离。适宜的吸附剂对各组分的吸附可以有很高的选择性,故特别适用于用精馏、吸收等方法难以分离的混合物的分离,以及气体与液体中微量杂质的去除。上节回顾化学吸附化学键力交换吸附静电引力物理吸附分子间力吸附剂表面特征表面能降低,为放热反应;吸附无选择性,分子引力随分子量增大而增加;无化学反应发生。上节回顾吸附容量大:由于吸附过程发生在吸附剂表面,所以吸附容量取决于吸附剂表面积的大小。选择性高:对要分离的目的组分有较大的选择性。稳定性好:吸附剂应具有较好的热稳定性,在较高温度下解
25、吸再生其结构不会发生太大的变化。同时,还应具有耐酸碱的良好化学稳定性。适当的物理特性廉价易得 具有一定吸附能力的多孔物质都可以作吸附剂.一、常用吸附剂的主要特性上节回顾二、重要吸附剂 活性炭、活性炭纤维;吸附树脂;特殊吸附剂:活性氧化铝、硅胶、沸石分子筛;其它吸附剂:褐煤、煤灰、煤灰渣等。上节回顾3、吸附剂的再生及方法:当吸附进行一定时间后吸附剂的表面就会被吸附物所覆盖,使吸附能力急剧下降,此时就需将被吸附物脱附,使吸附剂得到再生。吸附剂的再生,即吸附剂脱附,通常采用的方法:提高温度或降低吸附质在气相中的分压,这样的结果:吸附质将以原来的形态从吸附剂上回到气相或液相,这种现象称为“脱附”。上节
26、回顾在一定条件下,当流体(气体或液体)和吸附剂接触,流体中的吸附质将被吸附剂所吸附。吸附速度解吸速度当吸附速度和解吸速度相等时,流体中吸附质浓度不再改变时吸附平衡吸附剂吸附能力用吸附量q表示。吸附平衡与平衡吸附量上节回顾 1、吸附平衡:在一定温度和压力下,当流体(气体或液体)与固体吸附剂经长时间充分接触后,吸附质在流体相和固体相中的浓度达到平衡状态,称为吸附平衡。2、吸附过程的方向和极限:吸附平衡关系决定了吸附过程的方向和极限,是吸附过程的基本依据。若流体中吸附质浓度高于平衡浓度,则吸附质将被吸附,若流体中吸附质浓度低于平衡浓度,则吸附质将被解吸,最终达吸附平衡,过程停止。3、吸附平衡的影响因
27、素:单位质量吸附剂的平衡吸附量 受到许多因素的影响,如吸附剂的物理结构(尤其是表面结构)和化学组成,吸附质在流体相中的浓度,操作温度等。上节回顾(一)吸附平衡理论一、单组分气体吸附不同温度下NH3在木炭上的吸附等温线q=f(p,T)(9.3.1)上节回顾1.弗兰德里希(Freunlich)方程:q平衡吸附量,L/kgk和吸附剂种类、特性、温度有关的常数n常数,和温度有关p吸附质气相中的平衡分压,Pa随着p增大,吸附量q随之增加。但p增加到一定程度后,q不再变化。Freundlich方程为经验公式。压力范围不能太宽,低压或高压区域不能得到满意的实验拟合结果。(9.3.2)上节回顾2.朗格谬尔(l
28、angmuir)公式方程推导的基本假定:吸附剂表面性质均一,每一个具有剩余价力的表面分子或原子吸附一个气体分子。吸附质在吸附剂表面为单分子层吸附。吸附是动态的,被吸附分子受热运动影响可以重新回到气相。吸附过程类似于气体的凝结过程,脱附类似于液体的蒸发过程吸附在吸附剂表面的吸附质分子之间无作用力。上节回顾设吸附表面覆盖率为,则可以表示为:气体的脱附速度与成正比,可以表示为:kd 气体的吸附速度与剩余吸附面积(1)和气体分压成正比,可以表示为:ka p(1)qm为吸附剂表面所有吸附点均被吸附质覆盖时的吸附量,即饱和吸附量。(9.3.3)上节回顾吸附达到平衡时,吸附速度与脱附速度相等,则:整理后可得
29、单分子层吸附的Langmuir方程:p吸附质的平衡分压,Paq,qm分别为吸附量和单分子层吸附容量,L/kgk1Langmuir常数,与吸附剂和吸附质的性质和温度有关,该值越大表示吸附剂的吸附能力越强。(9.3.4)(9.3.5)上节回顾3.BET公式由Brunaner,Emmett和Teller3人提出的。基于多分子层吸附,在Langmuir公式基础上推导出来的。假设:吸附分子在吸附剂上是按各个层次排列的。吸附过程取决于范德华引力,吸附质可以在吸附剂表面一层一层地累叠吸附。每一层吸附都符合Langmuir公式。上节回顾p0吸附质组分的饱和蒸气压qm吸附剂表面完全被吸附质单分子层覆盖时的吸附量
30、kb常数,与温度、吸附热和冷凝热有关。BET公式中的参数qm和kb可以通过实验测定。通常只适用于比压(p/p0)约在0.050.35比压小于0.35,毛细凝聚变得显著,破坏多层物理吸附平衡。(9.3.6)上节回顾各组分的吸附量qA0、qB0分别为各组分单独存在且压力等于双组分总压时的平衡吸附量qA、qB为混合气体吸附平衡时吸附量(9.3.12)二、双组分气体吸附上节回顾由吸附平衡、吸附容量确定吸附剂的用量;选择最佳的吸附剂;吸附剂的最佳吸附条件;不同吸附剂的吸附特性对比;混合吸附质的竞争吸附比较。三、吸附模型的工程意义上节回顾1.液相吸附的特点液相吸附的机理比气相复杂。在吸附质发生吸附时,溶剂
31、也有可能被吸附。影响因素包括:除温度和溶质浓度外,溶剂种类、吸附质的溶解度和离子化、各种溶质之间的相互作用等。在溶剂的吸附作用忽略不计时,可以认为是单组分吸附。四、液相吸附第三节 吸附平衡 2.吸附等温线测定方法:假设溶剂不被吸附,或者液体混合物是溶质的稀溶液测定溶液与吸附剂接触前后的浓度变化第三节 吸附平衡 达到吸附平衡时:V:液体容积,m:吸附剂质量:吸附平衡时,液相中溶质浓度0:吸附前,液相中溶质浓度q=V(0-)/m3.吸附等温式Freundlich吸附等温方程式:q 平衡吸附量,kg/kgk 和吸附剂种类、特性、温度以及所用单位有关的常数n 常数,和温度有关 吸附质在液相中的平衡浓度
32、,mg/L第三节 吸附平衡(9.3.13)第四节 吸附机理(1)外部扩散。吸附剂周围的流体相中组分A扩散穿过流体膜到达固体吸附剂表面。(2)内部扩散。组分A从固体表面进入其微孔道,在微孔道的吸附流体相中扩散到微孔表面。(3)吸附。扩散到微孔表面的组分A分子被固体所吸附,完成吸附。(4)脱附。已被吸附的组分A分子,部分脱附,离开微孔道表面。(5)内反扩散。脱附的组分A分子从孔道内吸附流体相扩散到吸附剂外表面。固体吸附颗粒在流体中吸附过程的示意图:(6)外反扩散。组分A分子从外表面反扩散穿过流体膜,进入外界周围的流体中,从而完成脱附。(1)吸附质从流体主体扩散到吸附剂外表面外扩散(2)吸附质由吸附
33、剂的外表面向微孔中的内表面扩散内扩散(3)吸附质在吸附剂的内部表面上被吸附一般第(3)步的速度很快,吸附传质速率主要取决于第(1)和(2)两步。外扩散速度很慢外扩散控制内扩散速度很慢内扩散控制吸附剂从流体中吸附吸附质的传质过程第四节 吸附机理吸附速度主要取决于外部扩散速度和孔隙扩散速度。外部扩散速度与溶液浓度成正比与吸附剂的比表面积的大小成正比吸附剂颗粒直径越小,速度越快增加溶液与颗粒间的相对运动速度,可提高速度孔隙扩散速度吸附剂颗粒越小,速度越快第四节 吸附机理影响吸附的因素衡量指标吸附能力吸附速度固体吸附剂用吸附量衡量单位质量吸附剂在单位时间内所吸附的物质量第四节 吸附机理吸附速率:吸附速
34、率:1、定义:当含有吸附质的流体与吸附剂接触时,吸附质将被吸附剂吸附,吸附质在单位时间内被吸附的量称为吸附速率。吸附速率是吸附过程设计与生产操作的重要参量。2、影响因素:吸附速率与体系性质(吸附剂、吸附质及其混合物的物理化学性质)、操作条件(温度、压力、两相接触状况)以及两相组成等因素有关。第四节 吸附机理吸附过程不同阶段的吸附速率大小:对于一定体系,在一定的操作条件下,两相接触、吸附质被吸附剂吸附的过程如下:开始时,吸附质在流体相中浓度较高,在吸附剂上的含量较低,远离平衡状态,传质推动力大,故吸附速率高。过程中期,随着过程的进行,流体相中吸附质浓度降低,吸附剂上吸附质含量增高,传质推动力降低
35、吸附速率逐渐下降,末期平衡时,经过很长时间,吸附质在两相间接近平衡,吸附速率趋近于零。第四节 吸附机理一、接触过滤吸附二、固定床吸附本节的主要内容第五节 吸附操作与吸附穿透曲线 吸附设备操作方式连续式间歇式将废水和吸附剂放在吸附池内进行搅拌30min左右,然后静置沉淀,排除澄清液固定床移动床流化床吸附剂固定填放在吸附柱(或塔)中在操作过程中定期地将接近饱和的一部分吸附剂从吸附柱中排出,并同时将等量的新鲜吸附剂加入柱中吸附剂在吸附柱内处于膨胀状态,悬浮于由下而上的水流中第五节 吸附操作与吸附穿透曲线 一、接触过滤吸附接触过滤吸附是一种专门用于液体吸附的方法。将吸附剂与被处理的溶液加入到搅拌的吸附
36、槽中,经过足够的接触时间后,将液体和吸附剂分离。操作方式可以分为单级吸附、多级吸附和逆流吸附等第五节 吸附操作与吸附穿透曲线 液体接触过滤器示意图活性炭染料废水处理水第五节 吸附操作与吸附穿透曲线 含盐量较大的高色度有机废水,无机盐浓度为15%20%,主要是NaCl、Na2SO4。有机物主要是苯系、萘系化合物(BOD5/COD一般为0.020.2),并具有很强的毒性(一)单级吸附G,0G,1L,x0L,x1溶剂量G和吸附剂量L不变。根据质量守恒定律:G:溶剂量,m3;L:吸附剂量,kgx0,x1:吸附质在进、出吸附槽的吸附剂中的浓度,kg(吸附质)/kg(吸附剂)0,1:吸附质在进、出吸附槽的
37、溶液中的浓度,kg(吸附质)/m3(溶剂)吸附剂溶液第五节 吸附操作与吸附穿透曲线 (9.5.1)过端点(x0,0)和(x1,1),斜率为L/G的直线假设在该级操作中,固液之间达到平衡,即为一个理论级,则(x1,1)点在平衡线上。01x0 x1x操作线平衡线单级吸附操作线第五节 吸附操作与吸附穿透曲线 如果吸附平衡关系可用弗兰德里希公式表示,则吸附平衡可表示为:联立操作线方程和平衡线方程,可求出固、液相的极限浓度x1,1。如何求出固、液相的极限浓度x1,1?第五节 吸附操作与吸附穿透曲线 xk1/n(9.3.13)或已知x1,1,求固液比L/G:x00时n1 0 1x-L/G(9.5.2)(二
38、)多级吸附G,0G,1L1,x0L1,x1G,2L2,x0L2,x2对于第1级:对于第2级:第1级第2级吸附剂第五节 吸附操作与吸附穿透曲线 (9.5.1)(9.5.1)0 1x0 x1x 操作线操作线平衡线平衡线x2 2A1A2如果吸附平衡可表示为:x0=0时,每一级都是理论级,即(x1,1)和(x2,2)都在平衡线上。第五节 吸附操作与吸附穿透曲线 xk1/n(9.5.5)对于最小吸附剂总用量,d(L1+L2)/G/d10对于一定体系和分离要求,k,n,0及2为常数,则得:即当1符合上式时,总吸附剂用量为最小。由上式求出1,然后再计算各级所需要的吸附剂用量。吸附剂用量如何计算?第五节 吸附
39、操作与吸附穿透曲线 (9.5.6)(三)逆流多级吸附G,0 1 2 mL,x1L,xm+1x2 x312m上式为逆流吸附操作线方程。理论级数,可通过在平衡线和操作线之间做阶梯确定。吸附剂溶液第五节 吸附操作与吸附穿透曲线 对第m级做物料衡算:(9.5.7a)以整个流程为体系,做吸附质的物料衡算:(9.5.7b)0 xm+1x1x操作线平衡线m理论级数:2理论级数的图解法第五节 吸附操作与吸附穿透曲线 吸附剂量的计算过B点做不同斜率的操作线,求出最小吸附剂量。0 xm+1x1xm0 xm+1x1xm(L/G)min第五节 吸附操作与吸附穿透曲线 (L/G)min若体系的平衡关系可用弗兰德里希公式
40、表示,且所用的吸附剂不含吸附质,xm+1=0时,吸附剂用量可通过计算求得。以二级吸附为例:由该式可求得离开第1级的液相组成1,再求出吸附剂用量等其他参数。第五节 吸附操作与吸附穿透曲线 (9.5.8)例.用活性炭吸附去除水中的色度,在20下得到如下吸附实验数据。如果原水的色度为20色度单位/kg(原水),要求吸附后色度为原来的2.5%,试问下列操作中处理1t原水需要多少活性炭;1.单级操作2.二级错流,最小活性炭量3.二级逆流第五节 吸附操作与吸附穿透曲线 活性炭活性炭/kg.kg(原原水水)-100.005 0.010.0150.020.03平衡时色度/色度单位.kg(原水)-12010.6
41、63.421平衡时色度平衡时色度Y/色色度单位度单位.kg(原水原水)-12010.663.421单位质量活性炭吸附色度/kg.kg(C)-10188014001107900633lnY-2.361.791.220.690lnX-7.547.247.016.86.45二、固定床吸附第五节 吸附操作与吸附穿透曲线 优点:结构简单、造价低,吸附剂磨损少。缺点:1.操作麻烦,因是间歇操作,操作过程中两个吸附器需不断地周期性切换;2.单位吸附剂生产能力低,因备用设备虽然装有吸附剂,但处于非生产状态;3.固定床吸附剂床层尚存在传热性能较差,床层传热不均匀等缺点。(一)穿透点和穿透曲线固定床吸附器吸附传质
42、过程示意图吸附带第五节 吸附操作与吸附穿透曲线 在研究固定床吸附器在整个吸附操作过程中的变化时,是以流体等速通入床层,在流动状态下观察床层的浓度或流出物中吸附质的变化,如果以床层离进口端长度为横坐标,床层中吸附剂负荷为纵坐标,所绘制的吸附剂中所吸附的吸附质,沿床层不同高度的变化曲线称为吸附负荷曲线。若以操作时间为横坐标,以吸附器出口流出物中吸附质浓度为纵坐标,所绘制的流出物中吸附质浓度随时间变化的曲线称为透过曲线。穿透曲线示意图第五节 吸附操作与吸附穿透曲线 G:溶液流入速率(m3/(m2s))0:溶液中溶质浓度(kg/m3)z:固定床吸附塔填充高度(m)B:穿透点浓度(kg/m3)E:穿透曲
43、线终点浓度(kg/m3)B:出口处溶质浓度达到B时的流量(m3/m2)a:吸附区移动了吸附区高度za区间的流量(m3/m2)各符号的意义第五节 吸附操作与吸附穿透曲线 B,E间被吸附的吸附质质量W(kg/m2):吸附塔中的吸附区吸附剂全部被饱和时的吸附量为0a吸附区形成后吸附剂可吸附的吸附量与饱和吸附量之比f为:床层高度1.韦伯(Weber)法第五节 吸附操作与吸附穿透曲线 (9.5.10)(9.5.9)设床层的填充密度为b(kg/m3)与0平衡的吸附浓度为x0(kg-溶质/kg-吸附剂)则吸附塔全部被饱和时的吸附量为zb x0(kg/m2)穿透点的吸附量(kg/m2)为:穿透点吸附剂的饱和度
44、为:第五节 吸附操作与吸附穿透曲线 (9.5.11)假设吸附塔高度与吸附区高度相比足够高,假设吸附区不动,吸附塔以一定速度与溶液流向相反的方向移动塔顶:吸附剂与溶液中的吸附质达到平衡。塔底:流出的溶液中吸附质浓度为0。第五节 吸附操作与吸附穿透曲线 对吸附塔做物料平衡:(9.5.12)(1)常见的吸附分离设备和操作方式。(2)接触过滤吸附中,单级吸附、多级吸附和多级逆流吸附的平衡线和操作线关系,画示意图说明。(3)接触过滤多级逆流吸附最小吸附剂用量确定,画示意图说明。(4)接触过滤多级逆流吸附中理论级数确定。(5)固定床吸附中,床层可以分区,各区域的特点。(6)简述固定床吸附从开始到完全失去吸附能力的变化过程。(7)画出固定床吸附的穿透曲线的示意图,并在图中标出穿透点、终点、剩余吸附量和饱和吸附量。第五节 吸附操作与吸附穿透曲线