高考数学大一轮复习第四章三角函数解三角形4-5简单的三角恒等变换第2课时简单的三角恒等变换教师用书理新人教.doc

上传人:随风 文档编号:741071 上传时间:2019-06-07 格式:DOC 页数:13 大小:108.50KB
返回 下载 相关 举报
高考数学大一轮复习第四章三角函数解三角形4-5简单的三角恒等变换第2课时简单的三角恒等变换教师用书理新人教.doc_第1页
第1页 / 共13页
高考数学大一轮复习第四章三角函数解三角形4-5简单的三角恒等变换第2课时简单的三角恒等变换教师用书理新人教.doc_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《高考数学大一轮复习第四章三角函数解三角形4-5简单的三角恒等变换第2课时简单的三角恒等变换教师用书理新人教.doc》由会员分享,可在线阅读,更多相关《高考数学大一轮复习第四章三角函数解三角形4-5简单的三角恒等变换第2课时简单的三角恒等变换教师用书理新人教.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1 / 13【2019【2019 最新最新】精选高考数学大一轮复习第四章三角函数解三精选高考数学大一轮复习第四章三角函数解三角形角形 4-54-5 简单的三角恒等变换第简单的三角恒等变换第 2 2 课时简单的三角恒等变换课时简单的三角恒等变换教师用书理新人教教师用书理新人教题型一 三角函数式的化简例 1 (1)化简: .(2)已知 cos,则 sin .答案 (1)cos 2x (2)43 310解析 (1)原式1 24cos4x4cos2x12 sin(4x)cos(4x)cos2(4x)2cos2x124sin(4x)cos(4x)cos22x2sin(22x)cos 2x.(2)由题意可

2、得,cos2,cossin 2,即 sin 2.因为 cos0,所以 0,cos().cos cos()cos()cos sin()sin .(2)(2015广东)已知 tan 2.求 tan()的值;求的值解 tan()3.sin 2 sin2sin cos cos 212sin cos sin2sin cos 2cos21.命题点 2 给值求角问题例 3 (1)设 , 为钝角,且 sin ,cos ,则 的值为( )A. B.5 4C. D.或7 4(2)已知 ,(0,),且 tan(),tan ,则2 的值为 4 / 13答案 (1)C (2)3 4解析 (1), 为钝角,sin ,co

3、s ,cos ,sin ,cos()cos cos sin sin 0.又 (,2),(,2),.(2)tan tan()tantan 1tantan 0,00,00,所以 2,所以 cos 2且 ,又因为 sin()0,所以 ,所以 cos(),6 / 13因此 sin()sin()2sin()cos 2cos()sin 2()()55,cos()cos()2cos()cos 2sin()sin 2()(),又 ,2,所以 ,故选 A.题型三 三角恒等变换的应用例 4 (2016天津)已知函数 f(x)4tan xsincos.(1)求 f(x)的定义域与最小正周期;(2)讨论 f(x)在区

4、间上的单调性解 (1)f(x)的定义域为x|xk,kZf(x)4tan xcos xcos34sin xcos34sin x32sin xcos x2sin2x3sin 2x(1cos 2x)3sin 2xcos 2x2sin.所以 f(x)的最小正周期 T.(2)令 z2x,则函数 y2sin z 的单调递增区间是,kZ. 22k,22k由2k2x2k,kZ,得kxk,kZ.设 A,Bx|kxk,kZ,易知 AB.7 / 13所以当 x时,f(x)在区间上单调递增,在区间上单调递减思维升华 三角恒等变换的应用策略(1)进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意

5、公式的逆用和变形使用(2)把形如 yasin xbcos x 化为 ysin(x),可进一步研究函数的周期、单调性、最值与对称性(1)函数 f(x)sin(x)2sin cos x 的最大值为 (2)函数 f(x)sin(2x)2sin2x 的最小正周期是 答案 (1)1 (2)解析 (1)因为 f(x)sin(x)2sin cos xsin xcos cos xsin sin(x),1sin(x)1,所以 f(x)的最大值为 1.(2)f(x)sin 2xcos 2x(1cos 2x)sin 2xcos 2xsin(2x),T.9化归思想和整体代换思想在三角函数中的应用典例 (12 分)(2

6、015重庆)已知函数 f(x)sinsin xcos2x.(1)求 f(x)的最小正周期和最大值;(2)讨论 f(x)在上的单调性思想方法指导 (1)讨论形如 yasin xbcos x 型函数的性质,一律化成 ysin(x)型的函数(2)研究 yAsin(x)型函数的最值、单调性,可将 x 视为一个整体,换元后结合 ysin x 的图象解决规范解答8 / 13解 (1)f(x)sinsin xcos2xcos xsin x(1cos 2x)sin 2xcos 2xsin,4 分因此 f(x)的最小正周期为 ,最大值为.6 分(2)当 x时,02x,7 分从而当 02x,即x时,f(x)单调递

7、增,9 分当2x,即x时,f(x)单调递减11 分综上可知,f(x)在上单调递增;在上单调递减12 分1(2016青岛模拟)设 tan(),则 tan()等于( )A2 B2 C4 D4答案 C解析 因为 tan(),所以 tan ,故 tan()4,故选 C.2(2016全国甲卷)若 cos,则 sin 2 等于( )A. B. C D7 25答案 D解析 因为 sin 2cos2cos21,又因为 cos,所以 sin 221,故选 D.3(2016福州模拟)已知 tan 3,则的值等于( )A2 B3C4 D6答案 D解析 2tan 236.4已知 tan(),且0,则等于( )9 /

8、13A B3 510C D.2 55答案 A解析 由 tan(),得 tan .又0,所以 sin .故2sin .5设 (0,),(0,),且 tan ,则( )A3 B2 2C3 D2 2答案 B解析 由 tan ,得,即 sin cos cos cos sin ,sin()cos sin()(0,),(0,),(,),(0,),由 sin()sin(),得 ,2.6函数 f(x)sin(2x)cos(2x)的图象关于点对称,则f(x)的单调递增区间为( )A.,kZB.,kZC.,kZD.,kZ10 / 13答案 C解析 f(x)sin(2x)cos(2x)2sin,由题意知 2k(kZ

9、),k(kZ)|,.f(x)2sin.由 2k2x2k(kZ),得 kxk(kZ)故选 C.7若 f(x)2tan x,则 f 的值为 答案 8解析 f(x)2tan x12sin2 x2 1 2sin x2tan x,f8.8若锐角 、 满足(1tan )(1tan )4,则 .答案 3解析 由(1tan )(1tan )4,可得,即 tan().又 (0,),.9化简: .答案 43解析 原式3sin 12cos 123 22cos2121sin 1211 / 132 3sin482cos 24sin 12cos 124.10函数 f(x)sin x2sin2x (x)的最小值是 答案 1

10、解析 f(x)sin x(1cos x)2sin(x)1,又x,x,f(x)min2sin 11.11已知函数 f(x)cos2xsin xcos x,xR.(1)求 f()的值;(2)若 sin ,且 (,),求 f()解 (1)f()cos2sincos 6()2.(2)因为 f(x)cos2xsin xcos xsin 2x(sin 2xcos 2x)sin(2x),所以 f()sin()sin()(sin cos )又因为 sin ,且 (,),所以 cos ,所以 f()().12(2015安徽)已知函数 f(x)(sin xcos x)2cos 2x.(1)求 f(x)的最小正周期

11、;(2)求 f(x)在区间上的最大值和最小值解 (1)因为 f(x)sin2xcos2x2sin xcos xcos 2x1sin 12 / 132xcos 2xsin1,所以函数 f(x)的最小正周期为 T.(2)由(1)的计算结果知,f(x)sin1.当 x时,2x,由正弦函数 ysin x 在上的图象知,当 2x,即 x时,f(x)取最大值1;当 2x,即 x时,f(x)取最小值 0.综上,f(x)在上的最大值为1,最小值为 0.*13.已知函数 f(x)2cos2x12cos xsin x(01),直线 x是 f(x)图象的一条对称轴(1)求 的值;(2)已知函数 yg(x)的图象是由 yf(x)图象上各点的横坐标伸长到原来的 2 倍,然后再向左平移个单位长度得到的,若 g,求sin 的值解 (1)f(x)2cos2x12cos xsin xcos 2xsin 2x2sin.由于直线 x是函数 f(x)2sin 图象的一条对称轴,sin1.k(kZ),k(kZ)又 01,k.又kZ,从而 k0,.(2)由(1)知 f(x)2sin,由题意可得13 / 13g(x)2sin,即 g(x)2cos x.g2cos,cos.又 ,sin.sin sin( 6) 6sincos cossin 6.

展开阅读全文
相关资源
  • 高考数学大一轮复习第四章三角函数解三角形4-5简单的三角恒等变换第2课时简单的三角恒等变换教师用书理苏教.doc高考数学大一轮复习第四章三角函数解三角形4-5简单的三角恒等变换第2课时简单的三角恒等变换教师用书理苏教.doc
  • 高考数学大一轮复习第四章三角函数解三角形4-5简单的三角恒等变换第2课时简单的三角恒等变换教师用书理苏教.doc高考数学大一轮复习第四章三角函数解三角形4-5简单的三角恒等变换第2课时简单的三角恒等变换教师用书理苏教.doc
  • 高考数学大一轮复习第四章三角函数解三角形4-5简单的三角恒等变换第2课时简单的三角恒等变换教师用书.doc高考数学大一轮复习第四章三角函数解三角形4-5简单的三角恒等变换第2课时简单的三角恒等变换教师用书.doc
  • 高考数学大一轮复习第四章三角函数解三角形4-5三角恒等变形第2课时简单的三角恒等变形教师用书文北师大.doc高考数学大一轮复习第四章三角函数解三角形4-5三角恒等变形第2课时简单的三角恒等变形教师用书文北师大.doc
  • 高考数学大一轮复习第四章三角函数解三角形4-5三角恒等变形第1课时三角恒等变形教师用书文北师大.doc高考数学大一轮复习第四章三角函数解三角形4-5三角恒等变形第1课时三角恒等变形教师用书文北师大.doc
  • 2021版高考数学一轮复习第4章三角函数解三角形第3节简单的三角恒等变换第2课时简单的三角恒等变换课件理新人教A版2020051102104.ppt2021版高考数学一轮复习第4章三角函数解三角形第3节简单的三角恒等变换第2课时简单的三角恒等变换课件理新人教A版2020051102104.ppt
  • 高考数学大一轮复习第四章三角函数解三角形4-5简单的三角恒等变换第1课时两角和与差的正弦余弦和正切公式教师用书理新人教.doc高考数学大一轮复习第四章三角函数解三角形4-5简单的三角恒等变换第1课时两角和与差的正弦余弦和正切公式教师用书理新人教.doc
  • 高考数学大一轮复习第四章三角函数解三角形4-5简单的三角恒等变换第1课时两角和与差的正弦余弦和正切公式教师用书理新人教.doc高考数学大一轮复习第四章三角函数解三角形4-5简单的三角恒等变换第1课时两角和与差的正弦余弦和正切公式教师用书理新人教.doc
  • 高考数学大一轮复习第四章三角函数解三角形4-5简单的三角恒等变换第1课时两角和与差的正弦余弦和正切公式教师用书理苏教.doc高考数学大一轮复习第四章三角函数解三角形4-5简单的三角恒等变换第1课时两角和与差的正弦余弦和正切公式教师用书理苏教.doc
  • 高考数学大一轮复习第四章三角函数解三角形4-5简单的三角恒等变换第1课时两角和与差的正弦余弦和正切公式教师用书.doc高考数学大一轮复习第四章三角函数解三角形4-5简单的三角恒等变换第1课时两角和与差的正弦余弦和正切公式教师用书.doc
  • 相关搜索

    当前位置:首页 > 教育专区 > 高中资料

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁