《液压阀工作原理动画BD.pptx》由会员分享,可在线阅读,更多相关《液压阀工作原理动画BD.pptx(88页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1本章提要本章提要节流口的流量特性;流量负反馈;节流阀、调速阀、分流阀等三种流量控制阀的原理、结构、主要性能和应用;其它液压阀,如插装阀、电液比例阀、电液伺服阀的工作原理及应用。本章主要内容为 :本章重点是节流口的流量特性、流量负反馈、调速阀的工作原理和性本章重点是节流口的流量特性、流量负反馈、调速阀的工作原理和性能。学习时应从液压桥路和流量负反馈等基本概念着手理解这些阀的工作能。学习时应从液压桥路和流量负反馈等基本概念着手理解这些阀的工作原理。原理。第1页/共88页2 流量控制阀简称流量阀,它通过改变节流口通流面积或通流通道的长短来改变局部阻力的大小,从而实现对流量的控制,进而改变执行机构的
2、运动速度。流量控制阀包括节流阀、调速阀、分流集流阀等。本章除讨论普通的流量阀之外,还要简要介绍插装阀、电液比例阀和电液伺服阀。第2页/共88页3对流量控制阀的主要性能要求是:l)阀的压力差变化时,通过阀的流量变化小。2)油温变化时,流量变化小。3)流量调节范围大,在小流量时不易堵塞,能得到 很小的稳定流量。4)当阀全开时,通过阀的压力损失要小。5)阀的泄漏量要小。对于高压阀来说,还希望其调节力矩要小。第3页/共88页4对于节流孔口来说,可将流量公式写成下列形式:(7.1)7.1 节流口的流量特性7.1.17.1.1 节流口流量公式节流口流量公式节流口流量公式节流口流量公式 式中:阀口通流面积;
3、阀口前、后压差;由节流口形状和结构决定的指数,0.5ml;节流系数。Qp图图7.1 7.1 节流口的节流口的流量流量-压力特性压力特性细长孔细长孔m=1簿壁口簿壁口m=0.5第4页/共88页5 关于薄壁薄壁节流口的流量公式,在流体力学中已然推导和证明过,我们只引用其结论即可。令 ,m=0.5流过薄壁小孔的流量公式由式(7.1)变为:式中:Cd流量系数;油液密度。在流体力学中,我们遇到过两大类节流口。一类是细长孔,细长孔,m=1m=1。在液压工程中,往往把这类节流口当作固定(不可调)节流器使用。Qp细长孔细长孔m=1簿壁口簿壁口m=0.5 另一类是薄壁节流口薄壁节流口,m=0.5,m=0.5。用
4、紊流计算这一类节流口的流量。常常把它们作为节流阀阀口使用。第5页/共88页6上式也可写成 在上式中若m为常数,且 也是常数,调节A,则可调节通过节流阀的流量Q。需要说明的是流量系数Cd并不是常数,节流口的结构、形状、压力差、油温都对Cd有影响。精确的Cd值需靠试验确定。一般Cd=0.60.8。m值也受多种因素影响,一般m=0.51。一般薄壁节流口的m为0.5左右。尽管式(7-1)包含着一些非确定因素,但它毕竟给我们提供了一个对流量进行概略计算的简明表达式。第6页/共88页7 液压系统在工作时,希望节流口大小调节好后,流量 Q稳定不变。但实际上流量总会有变化,特别是小流量时,影响流量稳定性与节流
5、口形状、节流压差以及油液温度等因素有关。7.1.2 7.1.2 影响流量稳定性的因素影响流量稳定性的因素影响流量稳定性的因素影响流量稳定性的因素 (1)压差变化对流量稳定性的影响)压差变化对流量稳定性的影响 当节流口前后压差变化时,通过节流口的流量将随之改变,节流口的这种特性可用流量刚度T来表征。(7.2)第7页/共88页8m=0.5Qp细长孔细长孔m=1 1 2 3p1p2123簿壁口簿壁口刚度的物理意义如下:当p有某一增量时,Q值相应的也有某一增量,Q的增量值越大,说明流量的变化也就越大,从(7.2)式看,刚度就越小。反之,则刚度大。第8页/共88页9由式(7.2)可知:流量刚度与节流口压
6、差成正比,压差越大,刚度越大;压差一定时,刚度与流量成反比,流量越小,刚度越大;系数m越小,刚度越大。薄壁孔(m0.5)比细长孔(m1)的流量稳定性受P变化的影响要小。因此,为了获得较小的系数m,应尽量避免采用细长孔节流口,应使节流口形式接近于薄壁孔口,以获得较好的流量稳定性。第9页/共88页10(2)油温变化对流量稳定性的影响)油温变化对流量稳定性的影响 油温升高,油液粘度降低。对于细长孔,当油温升高使油的粘度降低时,流量Q Q就会增加。所以节流通道长时温度对流量的稳定性影响大。对于薄壁孔,油的温度对流量的影响是较小的,这是由于流体流过薄刃式节流口时为紊流状态,其流量与雷诺数无关,即不受油液
7、粘度变化的影响;节流口形式越接近于薄壁孔,流量稳定性就越好。第10页/共88页11节流阀的阻塞现象节流阀的阻塞现象 一般节流阀,只要保持油足够清洁,不会出现阻塞。有的系统要求缸的运动速度极慢,节流阀的开口只能很小,于是导致阻塞现象的出现。此时,通过节流阀的流量时大时小,甚至断流。(3)阻塞对流量稳定性的影响)阻塞对流量稳定性的影响 流量小时,流量稳定性与油液的性质和节流口的结构都有关。第11页/共88页12产生堵塞的主要原因是:油液中的杂质或因氧化析出的胶质等污物堆积在节流缝隙处;油液中的杂质或因氧化析出的胶质等污物堆积在节流缝隙处;由由于于油油液液老老化化或或受受到到挤挤压压后后产产生生带带
8、电电的的极极化化分分子子,被被吸吸附附到到缝缝隙隙表表面面,形形成成牢牢固固的的边边界界吸吸附附层层,因因而而影影响响了了节节流流缝缝隙隙的的大大小小。以以上上堆堆积积、吸吸附附物物增增长长到到一一定定厚厚度度时时,会会被被液液流流冲冲刷刷掉掉,随随后后又又重重新新附附在在阀阀口口上上。这这样样周周而而复始,就形成流量的脉动复始,就形成流量的脉动;阀口压差较大时容易产生堵塞现象。阀口压差较大时容易产生堵塞现象。第12页/共88页13减轻堵塞现象的措施有:适当选择节流口前后的压差适当选择节流口前后的压差适当选择节流口前后的压差适当选择节流口前后的压差,用多个节流口串联用多个节流口串联用多个节流口
9、串联用多个节流口串联。一般取P0.20.3MPa。精密过滤并定期更换油液精密过滤并定期更换油液精密过滤并定期更换油液精密过滤并定期更换油液。在节流阀前设置单独的精滤装置,为了除去铁屑和磨料,可采用磁性过滤器。节流口零件的材料应尽量选用电位差较小的金属节流口零件的材料应尽量选用电位差较小的金属节流口零件的材料应尽量选用电位差较小的金属节流口零件的材料应尽量选用电位差较小的金属,以减小吸附层的厚度。采用大水力半径的薄刃式节流口采用大水力半径的薄刃式节流口采用大水力半径的薄刃式节流口采用大水力半径的薄刃式节流口。一般通流面积越大、节流通道越短、以及水力半径越大时,节流口越不易堵塞。第13页/共88页
10、147.1.37.1.3节流口的形式与特征节流口的形式与特征 (1)直角凸肩节流口hB;B 阀体沉割槽的宽度。直角凸肩节流口直角凸肩节流口DB Bh h 本结构的特点是过流面积和开口量呈线性结构关系,结构简单,工艺性好。但流量的调节范围较小,小流量时流量不稳定,一般节流阀较少使用。节流口是流量阀的关键部位,节流口形式及其特性在很大程度上决定着流量控制阀的性能。第14页/共88页15(2)针阀式(锥形凸肩)节流口针阀式(锥形凸肩)节流口图图7.2(a)7.2(a)针阀(锥形)节流口针阀(锥形)节流口Dh(a)特点:结构简单,可当截止阀用。调节范围较大。由于过流断面仍是同心环状间隙,水力半径较小,
11、小流量时易堵塞,温度对流量的影响较大。一般用于要求较低的场合。第15页/共88页16(3)偏心式节流口偏心式节流口 节流口由偏心的三角沟槽组成。阀芯有转角时,节流口过流断面面积即产生变化。本结构的特点是,小流量调节容易。但制造略显得麻烦、阀芯所受的径向力不平衡,只宜用在低压场合。第16页/共88页17(4)轴向三角槽式节流口轴向三角槽式节流口 沿阀芯的轴向开若干个三角槽。阀芯做轴向运动,即可改变开口量h,从而改变过流断面面积。本节流口结构简单,水力半径大,调节范围较大。小流量时稳定性好,最低对流量的稳定流量为50ml/min。因小流量稳定性好,是目前应用最广的因小流量稳定性好,是目前应用最广的
12、一种节流口。一种节流口。lDh图图7.2(c)三角槽式节流口三角槽式节流口第17页/共88页18bhalDh第18页/共88页19图图7.2(d)7.2(d)周向缝隙式节流口周向缝隙式节流口(5)周向缝隙式节流口周向缝隙式节流口 阀芯上开有狭缝,旋转阀芯可以改变缝隙的通流面积大小。这种节流口可以作成薄刃结构,从而获得较小的稳定流量,但是阀芯受径向不平衡力,只适于低压节流阀中。第19页/共88页20 本结构为薄壁节流口,壁厚约0.070.09mm,流量受温度的影响小、不易堵塞、最低稳定流量约20ml/min。阀芯的轴向位移可改变节流口过流断面的面积。节流口易变形,工艺复杂是本结构的缺点。(6)轴
13、向缝隙式节流口轴向缝隙式节流口图图7.2(e)7.2(e)轴向缝隙式节流口轴向缝隙式节流口第20页/共88页217.2 流量负反馈 负载变化引起的流量波动可以通过流量负反馈来加以控制。与压力负反馈一样,流量负反馈控制的核心是要构造一个流量比较器和流量测量传感器。流量阀的流量测量方法主要有“压差法”和“位移法”两种。第21页/共88页22(1)流量流量测量原理测量原理7.2.17.2.1流量的流量的流量的流量的“压差法压差法压差法压差法”测量测量测量测量 在主油路中串联一个节流面积A0已调定的液阻液阻RQ作为流作为流量一次传感器量一次传感器,其压力差 Pq 代表流量QL;Q流量传感器流量传感器R
14、Q流量调节阀口流量调节阀口Rx第22页/共88页23Q流量传感器流量传感器RQ流量调节阀口流量调节阀口Rx 再设置一个作为流量二次传感的测压油缸A,将一次传感器输出的压差PQ引入该测压油缸A的两腔,即可将流量转化成与之相关的活塞推力FQ,FQ即为反馈信号。液阻液阻RQ和压差和压差测量缸测量缸A一起一起构成构成“压差法压差法”流量传感器。流量传感器。第23页/共88页流量传感器流量传感器RQ流量调节阀口流量调节阀口RxQ 与压力负反馈相类似,可用弹簧预压力F指作为指令信号,并与流量传感器的反馈力FQ共同作用在力比较器上,构成“流量-压差-力负反馈”,利用比较信号驱动流量调节器阀芯(液阻Rx),最
15、终达到流量自动稳定控制之目的。代表流量大小的代表流量大小的压差力指令力第24页/共88页流量传感器流量传感器RQ流量调节阀口流量调节阀口Rx流量大小流量大小(压差力)指令力Q第25页/共88页流量传流量传感器感器RQ流量调流量调节阀口节阀口Rx代表流量大小的压差力指令力(2)串联)串联减压式流量减压式流量负反馈控制负反馈控制 所谓“压力源串联减压式调节”是指系统采用压力源供油,流量调节阀口Rx与负载Z相串联,此时阀口Rx称为减压阀口。第26页/共88页 当负载流量QL变化时,流量传感器RQ上的压力差PQ也会发生变化,以此为控制依据,调节减压阀口Rx开口度,使流量朝着误差减小的方向变化,从而维持
16、负载流量QL基本恒定。据此原理设计而成的流量阀称为“调速阀”。第27页/共88页流量传感器流量传感器RQ流量调节阀口流量调节阀口Rx代表流量大小的压差力指令力(2)串联减)串联减压式流量负反压式流量负反馈控制馈控制 第28页/共88页流量传感器流量传感器RQ(3)并联溢流式流量负反馈控制 指令力代表流量大小的压差力流量调节流量调节阀口阀口Rx “流量源并联溢流式调节”则是指系统用流量源供油,流量调节阀口Rx与负载Z相并联。第29页/共88页 此时阀口Rx称为溢流阀口。当流量QL变化时,流量传感器RQ上的压力差PQ也会发生变化,以此作为控制信号,调节溢流阀口Rx的开口度,使流量朝着误差减小的方向
17、变化,从而维持负载负载流量QL基本恒定。据此原理设计而成的流量阀称为“溢流节流阀”。第30页/共88页图图7.3(4)串联与并联式对比)串联与并联式对比第31页/共88页32 与与“压差法压差法”相反,本方法是在主油路中串联一个压相反,本方法是在主油路中串联一个压差差P PQ Q基本恒定,但节流面积基本恒定,但节流面积A A0 0可变的节流口可变的节流口R RQ Q作为流量的一作为流量的一次传感器。因传感器的压差恒定,故液阻次传感器。因传感器的压差恒定,故液阻R RQ Q及传感器阀芯及传感器阀芯位移位移x xQ Q将随负载流量将随负载流量Q QL L而变化。而变化。7.2.17.2.1流量的流
18、量的流量的流量的“位移法位移法位移法位移法”测量测量测量测量根据节流口流量公式,有:第32页/共88页337.2.17.2.1流量的流量的流量的流量的“位移法位移法位移法位移法”测量测量测量测量 通过定压差的可变液阻RQ和位移测量弹簧一起构成了具有“流量-位移-力负反馈”的所谓“位移法”流量传感器。为了将一次传感器的位移信号转换成便于比较的力信号,再设置一个传感弹簧再设置一个传感弹簧K KQ Q作为位移作为位移-力转换的二次传力转换的二次传感器感器,流量QL转换成弹簧力FQ。第33页/共88页QL通过弹簧通过弹簧油缸使压油缸使压差基本恒差基本恒定定传感器的开传感器的开口(位移口(位移x)与流量
19、)与流量Q成比例成比例通过另一弹通过另一弹簧将位移转簧将位移转化为力化为力流量-位移 传感器第34页/共88页图图7.4 7.4 流量的流量的“位移法位移法”测量与反馈测量与反馈 通过弹簧将通过弹簧将位移转化为反位移转化为反馈力馈力流量一次流量一次传感器传感器流量调节流量调节主阀口主阀口比例电磁比例电磁铁产生流铁产生流量指令量指令先导阀先导阀第35页/共88页图图7.4第36页/共88页377.3 节 流 阀7.3.17.3.1节流阀节流阀 液流从进油口流入经节流口后,从阀的出油口流出。本阀的阀芯3的锥台上开有三角形槽。转动调节手轮1,阀芯3产生轴向位移,节流口的开口量即发生变化。阀芯越上移开
20、口量就越大。阀芯阀芯调节调节手轮手轮螺帽螺帽阀体阀体(a)第37页/共88页38 当节流阀的进出口压力差为定值时,改变节流口的开口量,即可改变流过节流阀的流量。节流阀和其它阀,例如单向阀、定差减压阀、溢流阀,可构成组合节流阀。图图 7.57.5第38页/共88页39图图 7.67.6 本节流阀具有螺旋曲线开口和薄刃式结构的精密节流阀。转动手轮和节流阀芯后,螺旋曲线相对套筒窗口升高或降低,改变节流面积,即可实现对流量的调节。第39页/共88页407.3.27.3.2单向节流阀单向节流阀 流体正向流动时,与节流阀一样,节流缝隙的大小可通过手柄进行调节;当流体反向流动时,靠油液的压力把阀芯4压下,下
21、阀芯起单向阀作用,单向阀打开,可实现流体反向自由流动。节流阀芯分成了上阀芯和下阀芯两部分。第40页/共88页41图图 7.7 7.7 单向节流阀单向节流阀7.3.27.3.2单向节流阀单向节流阀第41页/共88页42 根据“流量负反馈”原理设计而成的流量阀称为调速阀。根据“串联减压式”和“并联分流式”之差别,又分为调速阀和溢流节流阀2种主要类型,调速阀中又有普通调速阀和温度补偿型调速阀两种结构。调速阀和节流阀在液压系统中的应用基本相同,主要与定量泵、溢流阀组成节流调速系统。节流阀适用于一般的系统,而调速阀适用于执行元件负载变化大而运动速度要求稳定的系统中。7.4 调 速 阀第42页/共88页4
22、3 串联减压式调速阀是由定差减压阀1和节流阀2串联而成的组合阀。节流阀1充当流量传感器,节流阀口不变时,定差减压阀2作为流量补偿阀口,通过流量负反馈,自动稳定节流阀前后的压差,保持其流量不变。因节流阀(传感器)前后压差基本不变,调节节流阀口面积时,又可以人为地改变流量的大小。7.4.1 7.4.1 串联减压式串联减压式串联减压式串联减压式调速阀的工作原理调速阀的工作原理调速阀的工作原理调速阀的工作原理 图图 7.8(a)7.8(a)第43页/共88页44p1p3(c)简化简化符号(b)符号原理符号原理p1p3p2图图7.8 调速阀工作原理调速阀工作原理1-减压阀芯;减压阀芯;2-节流阀芯节流阀
23、芯acd1A2eb2ghp1(a)p2A2结构原理结构原理第44页/共88页45图图 7.87.8第45页/共88页46(b)详细符号详细符号p1p3(c)简化符号简化符号p1p3p2(a)结构原理p1p3p2节流阀减压阀acdA2eb2ghA11A3k k第46页/共88页47 节流阀芯杆2由热膨胀系数较大的材料制成,当油温升高时,芯杆热膨胀使节流阀口关小,能抵消由于粘性降低使流量增加的影响。7.4.2 7.4.2 温度补偿调温度补偿调温度补偿调温度补偿调速阀(节流阀)速阀(节流阀)速阀(节流阀)速阀(节流阀)图图 7.97.9 温度补偿调速阀减压阀部分的原理和普通调速阀相同。第47页/共8
24、8页487.4.2 7.4.2 溢流节流阀溢流节流阀溢流节流阀溢流节流阀 先不考虑安全阀第48页/共88页49 分流阀的作用是使液压系统中由同一个油源向两个以上执行元件供应相同的流量(等量分流),或按一定比例向两个执行元件供应流量(比例分流),以实现两个执行元件的速度保持同步或定比关系。集流阀的作用,则是从两个执行元件收集等流量或按比例的回油量,以实现其间的速度同步或定比关系。分流集流阀则兼有分流阀和集流阀的功能。它们的图形符号如图7.11所示。7.5 分 流 阀 分流阀又称为同步阀,它是分流阀、集流阀和分流集流阀的总称。第49页/共88页50图7.11 分流集流阀符号(a)分流阀;(b)集流
25、阀;(c)分流集流阀 第50页/共88页517.5.17.5.1分流阀分流阀第51页/共88页52 代表两路负载流量Q1和Q2大小的压差值P1和P2同时反馈到公共的减压阀芯6上,相互比较后驱动减压阀芯来调节Q1和Q2大小,使之趋于相等。分流阀可以看作是由两个串联减压式流量控制阀结合为一体构成的。7.5.17.5.1分流阀分流阀 该阀采用“流量-压差-力”负反馈,用两个面积相等的固定节流孔1、2作为流量一次传感器,作用是将两路负载流量Q1、Q2分别转化为对应的压差值P1和P2。第52页/共88页537.5.27.5.2集流阀集流阀与集流阀与分流阀的不同处为:只能保证执行元件回油时同步。集流阀装在
26、两执行元件的回油路上,将两路负载的回油流量汇集在一起回油;两流量传感器共出口O,流量传感器的通过流量Q1(或Q2)越大,其进口压力P1(或P2)则越高。因此集流阀的压力反馈方向正好与分流阀相反;第53页/共88页547.5.37.5.3分流集流阀分流集流阀 分流集流阀又称同步阀,它同时具有分流阀和集流阀两者的功能,能保证执行元件进油、回油时均能同步。挂钩式分流集流阀的结构原理图。第54页/共88页55 分流时,因P0P1(或P0P2),此压力差将两挂钩阀芯1、2推开,处于分流工况,此时的分流可变节流口是由挂钩阀芯1、2的内棱边和阀套5、6的外棱边组成;第55页/共88页56 集流时,因P0P1
27、(或P0P2),此压力差将挂钩阀芯1、2合拢,处于集流工况,此时的集流可变节流口是由挂钩阀芯1、2的外棱边和阀套5、6的内棱边组成。只能保证执行元件回油时同步。第56页/共88页57 插装阀又称逻辑阀,是一种较新型的液压元件,它的特点是通流能力大,密封性能好,动作灵敏、结构简单,因而主要用于流量较大系统或对密封性能要求较高的系统。7.6.17.6.1 插装阀插装阀7.6 插装阀、比例阀、伺服阀第57页/共88页58图7.16 插装阀的组成1先导控制阀;2控制盖板;3逻辑单元(主阀)、4,阀块体 插装阀由控制盖板、插装单元(由阀套、弹簧、阀芯及密封件组成)、插装块体和先导控制阀(如先导阀为二位三
28、通电磁换向阀)组成。由于插装单元在回路中主要起通、断作用,故又称二通插装阀。第58页/共88页59图7.15 插装阀逻辑单元 7.6.1.1 插装阀的工作原理插装阀的工作原理 图中图中A和和B为主油路仅有的两个工作油口,为主油路仅有的两个工作油口,K为控制油口(与先导为控制油口(与先导阀相接)。当阀相接)。当K口回油时,阀芯开启,口回油时,阀芯开启,A与与B相通;反之,当相通;反之,当K口进油时,口进油时,A与与B之间关闭。之间关闭。二通插装阀相当于一个液控单向阀。第59页/共88页607.6.1.2 方向控制插装阀方向控制插装阀 图7.17 插装阀用作方向控制阀(a)单向阀;(b)二位二通阀
29、第60页/共88页617.6.1.2 方向控制插装阀方向控制插装阀 图7.17 插装阀用作方向控制阀(c)二位三通阀;(d)二位四通阀第61页/共88页62图7.18 插装阀用作压力控制阀(a)溢流阀;(b)电磁溢流阀 7.6.1.3 压力控制插装阀压力控制插装阀 第62页/共88页637.6.1.4 流量控制插装阀流量控制插装阀 图7.19 插装节流阀 第63页/共88页64 电液比例阀是一种按输入的电气信号连续地、按比例地对油液的压力、流量或方向进行远距离控制的阀。与手动调节的普通液压阀相比,电液比例控制阀能够提高液压系统参数的控制水平;与电液伺服阀相比,电液比例控制阀在某些性能方向稍差一
30、些,但它结构简单、成本低,所以它广泛应用于要求对液压参数进行连续控制或程序控制,但对控制精度和动态特性要求不太高的液压系统中。7.6.2 电液比例阀 电液比例控制阀的构成,从原理上讲相当于在普通液压阀上,电液比例控制阀的构成,从原理上讲相当于在普通液压阀上,装上一个比例电磁铁以代替原有的控制(驱动)部分。根据用途和工装上一个比例电磁铁以代替原有的控制(驱动)部分。根据用途和工作特点的不同,电液比例控制阀可以分为电液比例压力阀、电液比例作特点的不同,电液比例控制阀可以分为电液比例压力阀、电液比例流量阀和电液比例方向阀三大类。下面对三类比例阀作简要介绍。流量阀和电液比例方向阀三大类。下面对三类比例
31、阀作简要介绍。第64页/共88页65 比例电磁铁是一种直流电磁铁,与普通换向阀用电磁铁的不同主要在于,比例电磁铁的输出推力与输入的线圈电流基本成比例。这一特性使比例电磁铁可作为液压阀中的信号给定元件。7.6.2.1 7.6.2.1 比例电磁铁图7.20比例电磁铁1一轭铁;2线圈;3一限位环;4隔磁环;5一壳体;6内盖;7一盖;8调节螺钉;9弹簧;10衔铁;11一支承环;12导向套第65页/共88页661一阀座;2先导锥阀;3-轭铁;4r衔铁;5弹簧;6推秆;7线圈;8弹簧;9先导阀7.6.2.2 7.6.2.2 电液比例电液比例溢流阀溢流阀用比例电磁铁取代先导型溢流阀导用比例电磁铁取代先导型溢
32、流阀导阀的调压手柄,便成为先导型比例阀的调压手柄,便成为先导型比例溢流阀溢流阀 第66页/共88页677.6.2.2 7.6.2.2 电液比例电液比例溢流阀溢流阀 阀下部与普通溢流阀的主阀阀下部与普通溢流阀的主阀相同,上部则为比例先导压力阀。相同,上部则为比例先导压力阀。该阀还附有一个手动调整的安全阀该阀还附有一个手动调整的安全阀(先导阀)(先导阀)9,用以限制比例溢流,用以限制比例溢流阀的最高压力。阀的最高压力。第67页/共88页68安全阀安全阀先导比例阀先导比例阀第68页/共88页697.6.2.3 7.6.2.3 比例方向节流比例方向节流阀阀第69页/共88页707.6.2.4 7.6.
33、2.4 电液比例调速电液比例调速阀阀第70页/共88页71 电液伺服阀是一种比电液比例阀的精度更高、响应更快的液电液伺服阀是一种比电液比例阀的精度更高、响应更快的液压控制阀。其输出流量或压力受输入的电气信号控制,主要用于高压控制阀。其输出流量或压力受输入的电气信号控制,主要用于高速闭环液压控制系统,而比例阀多用于响应速度相对较低的开环控速闭环液压控制系统,而比例阀多用于响应速度相对较低的开环控制系统中。制系统中。7.6.3 电液伺服阀 在流量型伺服阀中,要求主阀芯的位移在流量型伺服阀中,要求主阀芯的位移X XP P与的输入电流信号与的输入电流信号I I 成比例,为了保证主阀芯的定位控制,主阀和
34、先导阀之间设有位置成比例,为了保证主阀芯的定位控制,主阀和先导阀之间设有位置负反馈,位置反馈的形式主要有直接位置反馈和位置负反馈,位置反馈的形式主要有直接位置反馈和位置-力反馈两种。力反馈两种。电液伺服阀多为两级阀,有压力型伺服阀和流量型伺服阀之电液伺服阀多为两级阀,有压力型伺服阀和流量型伺服阀之分,绝大部分伺服阀为流量型伺服阀。分,绝大部分伺服阀为流量型伺服阀。第71页/共88页7.6.3.1 7.6.3.1 直接位置反馈电液伺服阀直接位置反馈电液伺服阀直接位置反馈电液伺服阀直接位置反馈电液伺服阀 力马达力马达 第72页/共88页73动圈式直接位动圈式直接位动圈式直接位动圈式直接位置反馈伺服
35、阀置反馈伺服阀置反馈伺服阀置反馈伺服阀桥路图桥路图桥路图桥路图先导级放大元件反馈杆第73页/共88页74动圈式伺服阀动圈式伺服阀动圈式伺服阀动圈式伺服阀反馈杆第74页/共88页75 动圈式伺服阀动圈式伺服阀动圈式伺服阀动圈式伺服阀第75页/共88页76第76页/共88页77 直接反馈伺服阀控制框图直接反馈伺服阀控制框图直接反馈伺服阀控制框图直接反馈伺服阀控制框图1、采用阀芯、阀套直接比较法;、采用阀芯、阀套直接比较法;2、导阀芯导阀套、导阀芯导阀套直接比较直接比较、通过刚性连接、通过刚性连接直接(测量)反馈直接(测量)反馈;3、放大元件放大元件为导阀部分为导阀部分、缸、缸是主阀两端部分是主阀两
36、端部分;4、指令元件指令元件是线圈,是线圈,被控对象被控对象是主阀芯,使主阀芯位移跟是主阀芯,使主阀芯位移跟踪动圈的指令位移踪动圈的指令位移。主阀两端缸主阀两端缸主阀两端缸主阀两端缸及主阀阻力及主阀阻力及主阀阻力及主阀阻力主阀芯主阀芯主阀芯主阀芯被控制被控制被控制被控制对象对象对象对象1 1 1 1(导阀套与主阀芯刚性连接)(导阀套与主阀芯刚性连接)(导阀套与主阀芯刚性连接)(导阀套与主阀芯刚性连接)X XX X套套套套-直接反馈伺服阀控制框图直接反馈伺服阀控制框图直接反馈伺服阀控制框图直接反馈伺服阀控制框图扰扰 动动导阀芯阀导阀芯阀套比较套比较线圈线圈导阀导阀导阀导阀B+BB+BB+BB+B
37、 开环控制(放大)开环控制(放大)部部部部分分分分1 1 1 1X X芯芯芯芯第77页/共88页7.6.3.2 7.6.3.2 喷嘴挡板式力反馈电液伺服阀喷嘴挡板式力反馈电液伺服阀喷嘴挡板式力反馈电液伺服阀喷嘴挡板式力反馈电液伺服阀 力马达力马达 固定节流孔固定节流孔 反馈弹簧杆反馈弹簧杆 喷嘴喷嘴 挡板(导阀芯)挡板(导阀芯)弹簧管弹簧管(扭簧)(扭簧)要求:要求:主阀芯位移自动跟主阀芯位移自动跟踪输入的电流,与踪输入的电流,与输入电流成比例。输入电流成比例。主滑阀主滑阀先先导导级级油油缸左腔缸左腔先先导导级级油油缸左腔缸左腔第78页/共88页 力矩马达力矩马达 衔铁衔铁磁钢磁钢导磁体导磁体
38、吸吸吸吸斥斥斥斥Kt第79页/共88页 双喷嘴挡板阀双喷嘴挡板阀 第80页/共88页 被控对象被控对象 被控对象被控对象 力矩比较元件反馈杆反馈杆弹簧管弹簧管第81页/共88页力马达力马达 固定节流孔固定节流孔 反馈弹簧杆反馈弹簧杆 喷嘴喷嘴 挡板(导阀芯)挡板(导阀芯)弹簧管弹簧管(扭簧)(扭簧)主滑阀主滑阀先先导导级级油油缸左腔缸左腔先先导导级级油油缸左腔缸左腔第82页/共88页7.6.3.3 电液伺服阀的应用电液伺服阀的应用 第83页/共88页 流量负反馈比压力负反馈更为复杂,关键在于要将流量转化成便于比较的力以后,再反馈到阀芯上。将流量转化成力的过程称为流量的传感测量,转换部件称为流量
39、传感器。流量阀的流量测量方法有两种:“压差法”和“位移法”。用“压差法”测量时,先将流量转化成压力差,再用测压法测量,因此用于稳定流量的调速阀被称为“定差”阀。“位移法”测量时,先将流量转化成位移,再用弹簧将其转化为反馈力。小小 结结 调速阀和分流阀是根据流量负反馈原理工作的,用于调节和稳定流量。流量负反馈的核心是将被控流量转化为力信号与指令力比较,指令力可用调压弹簧或比例电磁铁产生,比较元件一般是流量调节阀芯或先导阀。第84页/共88页 插装阀可组成方向阀、压力阀、流量阀,它相当于电液动阀,流量大、密封好,常用于大流量系统中。小小 结结 节流阀没有流量负反馈,因此无法自动稳定流量,但用于节流调速系统时功率损失比调速速阀小。轴向三角槽式节流口的水力半径较大,加工简单,应用较广。电液比例阀能按输入的电气信号连续地、比例地控制压力或流量,与电液伺服阀相比,响应速度和精度低一些,多用于开环比例控制。电液伺服阀精度高、响应快,多用于闭环控制。第85页/共88页86第86页/共88页87第87页/共88页88感谢您的观看!第88页/共88页