高考数学一轮复习第3章三角函数解三角形第6讲正弦定理和余弦定理学案.doc

上传人:随风 文档编号:739724 上传时间:2019-06-07 格式:DOC 页数:16 大小:136.36KB
返回 下载 相关 举报
高考数学一轮复习第3章三角函数解三角形第6讲正弦定理和余弦定理学案.doc_第1页
第1页 / 共16页
高考数学一轮复习第3章三角函数解三角形第6讲正弦定理和余弦定理学案.doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《高考数学一轮复习第3章三角函数解三角形第6讲正弦定理和余弦定理学案.doc》由会员分享,可在线阅读,更多相关《高考数学一轮复习第3章三角函数解三角形第6讲正弦定理和余弦定理学案.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1 / 16【2019【2019 最新最新】精选高考数学一轮复习第精选高考数学一轮复习第 3 3 章三角函数解三章三角函数解三角形第角形第 6 6 讲正弦定理和余弦定理学案讲正弦定理和余弦定理学案板块一 知识梳理自主学习必备知识考点 1 正弦定理2R,a sinA其中 2R 为ABC 外接圆的直径变式:a2RsinA,b2RsinB,c2RsinC.abcsinAsinBsinC.考点 2 余弦定理a2b2c22bccosA;b2a2c22accosB;c2a2b22abcosC.变式:cosA;cosB;cosC.sin2Asin2Bsin2C2sinBsinCcosA.考点 3 在ABC

2、中,已知 a,b 和 A 时,三角形解的情况A为锐角A为钝角或直角图形关系式absinAbsinAbab解的个数一解两解一解一解无解考点 4 三角形中常用的面积公式1Sah(h 表示边 a 上的高)2SbcsinAacsinBabsinC.2 / 163Sr(abc)(r 为三角形的内切圆半径)必会结论在ABC 中,常有以下结论(1)ABC.(2)在三角形中大边对大角,大角对大边(3)任意两边之和大于第三边,任意两边之差小于第三边(4)sin(AB)sinC;cos(AB)cosC;tan(AB)tanC;sincos;cossin.(5)tanAtanBtanCtanAtanBtanC.(6

3、)ABabsinAsinBcosA0,sinA1,A,故ABC 为直角三角形本例条件变为若,判断ABC 的形状解 由,得,sinAcosAcosBsinB,sin2Asin2B.A、B 为ABC 的内角,2A2B 或 2A2B,AB 或 AB,ABC 为等腰三角形或直角三角形本例条件变为若 a2bcosC,判断ABC 的形状解 解法一:因为 a2bcosC,所以由余弦定理得,a2b,整理得 b2c2,则此三角形一定是等腰三角形解法二:sinA2sinBcosC,sin(BC)2sinBcosC,sin(BC)0,0,于是有 cosB0,则 cosA0,b5.22017全国卷ABC 的内角 A,

4、B,C 的对边分别为a,b,c.已知 sinBsinA(sinCcosC)0,a2,c,则 C( )A. B. C. D. 3答案 B解析 因为 a2,c,所以由正弦定理可知,故 sinAsinC.又 B(AC),故 sinBsinA(sinCcosC)sin(AC)sinAsinCsinAcosCsinAcosCcosAsinCsinAsinCsinAcosC(sinAcosA)sinC0.又 C 为ABC 的内角,故 sinC0,则 sinAcosA0,即 tanA1.又 A(0,),所以 A.从而 sinCsinA.由 A知 C 为锐角,故 C.故选 B.32017浙江高考已知ABC,A

5、BAC4,BC2.点 D 为AB 延长线上一点,BD2,连接 CD,则BDC 的面积是15 / 16_,cosBDC_.答案 104解析 依题意作出图形,如图所示,则 sinDBCsinABC.由题意知 ABAC4,BCBD2,则 sinABC,cosABC.所以 SBDCBCBDsinDBC22.因为 cosDBCcosABCBD2BC2CD2 2BDBC,所以 CD.由余弦定理,得 cosBDC.4ABC 的内角 A,B,C 的对边分别为 a,b,c,已知2cosC(acosBbcosA)c.(1)求 C;(2)若 c,ABC 的面积为,求ABC 的周长解 (1)由已知及正弦定理得,2co

6、sC(sinAcosBsinBcosA)sinC,2cosCsin(AB)sinC.故 2sinCcosCsinC.可得 cosC,所以 C.(2)由已知,得 absinC.又 C,所以 ab6.由已知及余弦定理得,a2b22abcosC7.故 a2b213,从而(ab)225.所以ABC 的周长为 5.52017天津高考在ABC 中,内角 A,B,C 所对的边分别为 a,b,c.已知 asinA4bsinB,ac(a2b2c2)(1)求 cosA 的值;16 / 16(2)求 sin(2BA)的值解 (1)由 asinA4bsinB,及,得 a2b.由 ac(a2b2c2)及余弦定理,得 cosA.(2)由(1),可得 sinA,代入 asinA4bsinB,得 sinB.由(1)知,A 为钝角,所以 cosB.于是 sin2B2sinBcosB,cos2B12sin2B,故 sin(2BA)sin2BcosAcos2BsinA.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁