《传感器原理温度传感器.pptx》由会员分享,可在线阅读,更多相关《传感器原理温度传感器.pptx(56页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2.1 温标及测温方法 2.1.1 温 标 经验温标:1.摄氏温标;2.华氏温标;3.列氏温标。摄氏、华氏、列氏温度之间的换算关系为 C=(5/9)*(F-32)=(5/4)R 热力学温标:1848年威廉.汤姆首先提出以热力学第二定律为基础建立起来的温度仅与热量有关而与物质无关的热力学温标。因是开尔文总结出来的故又称为开尔文温标,用符号 K表示。国际实用温标 为了解决国际上温度标准的统一及实用问题,国际上协商决定,建立一种既能体现热力学温度(即能保证一定的准确度),又使用方便、容易实现的温标,这就是国际实用温标,又称国际温标。第1页/共56页2.1 温标及测温方法2.1.2温度检测的主要方法及
2、分类 温度检测方法一般可以分为两大类,即接触测量法和非接触测量法。常用的测温方法、类型及特点如表2.1.1所示。第2页/共56页2.2 电阻式温度传感器 热电阻温度传感器是利用导体或半导体的电阻率随温度的变化而变化的原理制成的,实现了将温度的变化转化为元件电阻的变化。有金属(铂、铜和镍)热电阻及半导体热电阻(称为热敏电阻)。2.2.1 金属热电阻传感器 1、热电阻类型:金属热电阻主要有铂电阻、铜电阻和镍电阻等,其中铂电阻和铜电阻最为常见。(1)铂热电阻:在-2000的范围内 在0850的范围内 (2)铜热电阻:可表示为 第3页/共56页2.2 电阻式温度传感器2、热电阻的结构:热电阻主要由电阻
3、体、绝缘套管和接线盒等组成。电阻体由电阻丝、引出线、骨架等组成。第4页/共56页2.2 电阻式温度传感器n3、热电阻传感器的测量电路 (1)三线制 (2)四线制第5页/共56页2.2.2半导体热敏电阻传感器 热敏电阻是利用半导体材料的电阻率随温度变化而变化的性质制成的。1、特性:温度特性和伏安特性 NTC型、PTC型、CTR型三类热敏电阻的特性曲线如图2.2 电阻式温度传感器 第6页/共56页2.2 电阻式温度传感器2、热敏电阻的主要参数 标称电阻值RH:是指环境温度为25 0.2时测得的电阻值,又称冷电阻,单位为。耗散系数H:是指热敏电阻的温度变化与周围介质的温度相差1时,热敏电阻所耗散的功
4、率,单位为W-1。电阻温度系数:热敏电阻的温度变化1 时,阻值的变化率。通常指温标为20 时的温度系数,单位为(%)-1。第7页/共56页2.2 电阻式温度传感器热容量C:热敏电阻的温度变化1 时,所需吸收或释放的能量,单位为J-1。时间常数:是指温度为T0的热敏电阻,在忽略其通过电流所产生热量的作用下,突然置于温度为T的介质中,热敏电阻的温度增量达到T=0.63(T-T0)时所需时间,它与电容C和耗散系数H之间的关系如下:第8页/共56页2.2 电阻式温度传感器3、热敏电阻的特点:灵敏度高,体积小、热贯性小、结构简单,化学稳定性好,机械性能强,价格低廉,寿命长,热敏电阻的缺点是复现性和互换性
5、差,非线性严重,测温范围较窄,目前只能达到-50300。4、热敏电阻的应用:(1)温度测量 (2)温度补偿 第9页/共56页2.2 电阻式温度传感器第10页/共56页2.2 电阻式温度传感器(3)温度控制:用热敏电阻与一个电阻相串联,并加上恒定的电压,当周围介质温度升到某一数值时,电路中的电流可以由十分之几毫安突变为几十毫安。因此可以用继电器的绕阻代替不随温度变化的电阻。当温度升高到一定值时,继电器动作,继电器的动作反应温度的大小,所以热敏电阻可用作温度控制。(4)过热保护第11页/共56页2.3 薄膜热传感器薄膜热传感器是随着人们对温度信息获取的手段要求越来越高,对温度传感器的超小型化的要求
6、越来越迫切而产生的。由于薄膜热电阻的性能优良,可以替代传统的结构型热传感器,适用于物体表面、快速和小间隙场所的温度测量,因而被广泛地应用于冶金、化工、能源、交通、机电、仪器仪表和科学实验等领域。2.3.1 金属薄膜热电阻 1、薄膜热传感器的结构n基片n敏感膜n引线nWnL第12页/共56页2.3 薄膜热传感器2、薄膜热电阻的测温机理 铂热电阻在2000范围内的电阻与温度的关系近似地表示,即第13页/共56页2.3 薄膜热传感器2.3.2 多晶硅薄膜热电阻 1、结构2、测温机理第14页/共56页2.4 热电偶传感器2.4.1 热电偶测温原理 1、热电偶的特点 测量范围宽、性能稳定、准确可靠、信号
7、可以远传和记录。2、热电偶的分类 (1)热电偶材料分:贵金属、廉价金属、难熔金属和非金属。(2)按用途和结构分:普通工业用(直形、角形和锥形)和专用(钢水消耗、多点式和表面测温)。第15页/共56页2.4 热电偶传感器3、热电偶的测温原理:热电偶测温是基于热电效应,在两种不同的导体(或半导体)A和B组成的闭合回路中,如果它们两个接点的温度不同,则回路中产生一个电动势,通常我们称这种现象为热电势,这种现象就是热电效应。接触电势和温差电势。第16页/共56页2.4 热电偶传感器当热电偶材料一定时,热电偶的总电势成为温度T和T0的函数差。即如果使冷端温度T0固定,则对一定材料的热电偶,其总电 势就只
8、与温度T成单值函数关系,即 第17页/共56页2.4 热电偶传感器由此可得有关热电偶的几个结论 (1)热电偶必须采用两种不同材料作为电极,否则无论热 电偶两端温度如何,热电偶回路总热电势为零。(2)尽管采用两种不同的金属,若热电偶两接点温度相等,即T=T0,回路总电势为零。(3)热电势只与结点温度有关,与中间各处温度无关。第18页/共56页2.4 热电偶传感器4、热电偶基本定律 (1)均质导体定律 由一种均质导体或半导体组成的闭合回路,不论其截面、长度如何以及各处的温度如何分布,都不会产生热电动势。即热电偶必须采用两种不同材料作为电极。(2)中间导体定律 在热电偶回路中,接入第三种导体C,只要
9、这第三种导体两端温度相同,则热电偶所产生的热电动势保持不变。即第三种导体C的引入对热电偶回路的总电动势没有影响。第19页/共56页2.4 热电偶传感器(3)中间温度定律 在热电偶回路中,两结点温度为T、T0时的热电动势,等于该热电偶在结点温度为T、Ta和Ta、T0时热电动势的代数和,即(4)标准电极定律 当温度为T、T0时,用导体A、B组成的热电偶的热电动势等于AC热电偶和CB热电偶的热电动势之代数和,即 导体C称为标准电极,故把这一定律称为标准电极定律。第20页/共56页2.4 热电偶传感器2.4.2 热电极材料及常用热电偶 1、热电极材料 (1)在测温范围内,热电性质稳定,不随时间和被测介
10、质变化,物理化学性能稳定,不易氧化或腐蚀。(2)导电率要高,并且电阻温度系数要小。(3)它们组成的热电偶,热电动势随温度的变化率要大,并且希望该变化率在测温范围内接近常数。(4)材料的机械强度要高,复制性要好,复制工艺要简单,价格便宜。第21页/共56页2.4 热电偶传感器2、标准热电偶 (1)铂铑10-铂热电偶(S型)(2)铂铑30-铂铑6热电偶(B型)(3)镍铬-镍硅(镍铬-镍铝)热电偶(K型)(4)镍铬-考铜热电偶(E型)3、非标准热电偶 (1)钨铼系:通常用于测量300 2000,分度误差为 1%的温度,短时间测量可达3 000。(2)铱铑系:在中性介质和真空中测温可长期使用到2 00
11、0左右。(3)镍钴-镍铝:测温范围为300 1 000。第22页/共56页2.4 热电偶传感器2.4.3 热电偶的结构 1、普通型热电偶:通常都是由热电极、绝缘材料、保护套管和接线盒等主要部分组成。2、铠装热电偶:铠装热电偶是由热电极、绝缘材料和金属套管经拉伸加工而成的组合体,其结构分单芯和双芯两种。第23页/共56页2.4 热电偶传感器2.4.4 热电偶冷端温度补偿 由热电偶的作用原理可知,热电偶热电动势的大小,不仅与测量端的温度有关,而且与冷端的温度有关,是测量端温度t和冷端温度t 0的函数差。1、补偿导线法:常用热电偶的补偿导线参见表2.4.2。在使用补偿导线时必须注意以下问题:(1)补
12、偿导线只能在规定的温度范围内(一般为0 100)与热电偶的热电动势相等或相近。(2)不同型号的热电偶有不同的补偿导线。(3)热电偶和补偿导线的两个接点处要保持同温度。(4)补偿导线有正、负极,与热电偶的正、负极相连。(5)补偿导线的作用只是延伸热电偶的自由端,当自由端t0 0时,还需进行其他补偿与修正。第24页/共56页2.4 热电偶传感器2、计算法:3、冰浴法:把热电偶的冷端置于冰水混合物的容器里,保证使 t 0=0。这种办法最为妥善,然而不够方便,所以仅限于科学实验中应用。第25页/共56页2.4 热电偶传感器4、补偿电桥法:补偿电桥法是利用不平衡电桥产生的电势来补偿热电偶因冷端温度变化而
13、引起的热电势变化值,如图所示。5、软件处理法第26页/共56页2.4 热电偶传感器2.4.5 热电偶常用测温线路 1、测量某点温度的基本电路 2、测量两点之间温度差的测温电路 第27页/共56页2.4 热电偶传感器3、测量多点的测温线路 多个被测温度用多支热电偶分别测量,但多个热电偶共用一台显示仪表,它们是通过专用的切换开关来进行多点测量的。第28页/共56页2.4 热电偶传感器4、测量平均温度的测温线路:其缺点是当某一热电偶烧断时,不能很快地觉察出来。5、测量几点温度之和的测温线路:优点是热电偶烧坏时可立即知道,还可获得较大的热电动势。第29页/共56页2.5 辐射式温度传感器与接触式测温相
14、比较:1.传感器和被测对象不接触,不会破坏被测对象的温度场,故可测量运动物体的温度并可进行遥测。2.由于传感器或热辐射探测器不必达到与被测对象同样的温度,故仪表的测温上限不受传感器材料熔点的限制,从理论上说仪表无测温上限。3.在检测过程中传感器不必和被测对象达到热平衡,故检测速度快,响应时间短,适于快速测温。2.5.1 辐射测温的物理基础 辐射式温度传感器是利用物体的辐射能随温度变化的原理制成的。第30页/共56页2.5 辐射式温度传感器1、热辐射:物体受热,激励了原子中带电粒子,使一部分热能以电磁波的形式向空间传播,它不需要任何物质作媒介(即在真空条件下也能传播),将热能传递给对方,这种能量
15、的传播方式称为热辐射(简称辐射),传播的能量叫辐射能。辐射能量的大小与波长、温度有关。2、黑体:所谓黑体是指能对落在它上面的辐射能量全部吸收的物体。在某个给定温度下,对应不同波长的黑体辐射能量是不相同的,在不同温度下对应全波长(:0)范围总的辐射能量也是不相同的。第31页/共56页2.5 辐射式温度传感器 3、辐射基本定律(1)普朗克定律:普朗克定律揭示了在各种不同温度下黑体辐射能量按波长分布的规律,其关系式 (2)斯忒藩-波耳兹曼定律:斯忒藩-波耳兹曼定律确定了黑体的全辐射与温度的关系如上。此式表明,黑体的全辐射能是和它的绝对温度的四次方成正比,所以这一定律又称为四次方定律。把灰体全辐射能
16、E与同一温度下黑体全辐射能E0相比较,得到物体的另一个特征量第32页/共56页2.5 辐射式温度传感器2.5.2 辐射测温方法1.亮度法:是指被测对象投射到检测元件上的是被限制在某一特定波长的光谱辐射能量,而能量的大小与被测对象温度之间的关系是普朗克公式所描述的一种辐射测温方法,即比较被测物体与参考源在同一波长下的光谱亮度,并使二者的亮度相等,从而确定被测物体的温度,典型测温传感器是光学高温计。第33页/共56页2.5 辐射式温度传感器2.全辐射法:全辐射法是指被测对象投射到检测元件上的是对应全波长范围的辐射能量,而能量的大小与被测对象温度之间的关系是由斯忒藩波耳兹曼所描述的一种辐射测温方法,
17、典型测温传感器是辐射温度计(热电堆)。第34页/共56页2.5 辐射式温度传感器 3.比色法:被测对象的两个不同波长的光谱辐射能量投射到一个检测元件上,或同时投射到两个检测元件上,根据它们的比值与被测对象温度之间的关系实现辐射测温的方法,比值与温度之间的关系由两个不同波长下普朗克公式之比表示,典型测温传感器是比色温度计。第35页/共56页2.6 石英晶体测温传感器石英晶体谐振器的等效电路温度与频率的关系第36页/共56页 2.6 石英晶体测温传感器石英晶体数字温度计的原理框图如图 晶 体 探头晶体基准振荡器振荡器混频器低通滤波器数字显示计数器计数间隔f f 0f f 0f 第37页/共56页2
18、.7 光纤传感器2.7.1 光纤传感原理 1、光纤结构:光纤为玻璃光纤,其结构如图所示,它由导光的纤芯及其周围的包层组成,包层的外面常有塑料或橡胶等保护套。包层折射率n1略小于纤芯折射率n2,它们的相对折射率差 通常为0.0050.14这样的构造可以保证入射到光纤内的光波集中在芯子内传播。第38页/共56页2.7 光纤传感器2、工作原理:光纤工作的基础是光的全反射。当端面入射的光满足全反射条件时 即使用时应使入射光处于2c的光锥角内,光纤才能理想地导光。否则,这些光线便从包层中逸出而产生漏光。3、光纤分类:按传输的模式分为单模和多模两类。第39页/共56页2.7 光纤传感器2.7.2光纤温度传
19、感器 光纤温度传感器按其工作原理可分两大类:功能型和非功能型。1、功能型:功能型也称物性型或传感型,是利用其某种参数随温度变化的特性作为传感器的主体,即将其作为敏感元件进行测温。第40页/共56页2.7 光纤传感器2、非功能型:非功能型也称结构型或传光型,光纤在这类传感器中只是作传光的媒质,还须要加上其它的敏感元件才能构成传感器。第41页/共56页2.8 集成数字温度传感器 集成温度传感器是利用晶体管PN结的电流与电压特性与温度的关系,把敏感元件、放大电路和补偿电路等部分集成化,并把它们装封在同一壳体里的一种一体化温度检测元件。一般只能用来测50以下的温度。2.8.1 集成温度传感器工作原理及
20、分类 1、工作原理第42页/共56页2.8 集成数字温度传感器2、分类 电压型、电流型、数字输出型,典型的电压型集成电路温度传感器有PC616AC,LM135,AN670l等;典型的电流型集成电路温度传感器为AD590,LM134;典型的数字输出型传感器有DS1B820,ETC-800等。第43页/共56页2.8 集成数字温度传感器2.8.2电压型集成温度传感器PC616AC 四端电压输出型传感器框图:它由PTAT核心电路、参考电压源和运算放大器三部分组成,其四个端子分别为U+、U-、输入和输出。该类型传感器的最大工作温度范围是-40125,灵敏度是10mVK,线性偏差为0.5%2%,长期稳定
21、性和重复性为0.3%,精度为4 K。第44页/共56页2.8 集成数字温度传感器基本应用电路第45页/共56页2.8 集成数字温度传感器温度检测电路第46页/共56页2.8 集成数字温度传感器2.8.3电流型集成温度传感器AD590 1、性能特点 线性电流输出:1AK。工作温度范围:-55155。两端器件:电压输入,电流输出。激光微调使定标精度达0.5。整个工作温度范围内非线性误差小于0.5。工作电压范围:4 V30 V。器件本身与外壳绝缘。第47页/共56页2.8 集成数字温度传感器2、简单应用:温度测量和温差测量第48页/共56页2.8 集成数字温度传感器多点温度测量第49页/共56页2.
22、8 集成数字温度传感器2.8.4 数字输出型传感器DS1820 1、DS1820 的主要特性(1)适应电压范围3.05.5V,在寄生电源方式下可由数据线供电;(2)独特的单线接口方式,DS18B20在与微处理器连接时,仅需要一条口线即可实现微处理器与DS18B20的双向通讯;(3)DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温;(4)DS18B20在使用中,不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内;(5)测温范围55125,在10+85时精度为0.5;(6)可编程的分辨率为912位,对应的可分辨温度分别为0.5、0.
23、25、0.125和0.0625,可实现高精度测温;第50页/共56页2.8 集成数字温度传感器(7)在9位分辨率时,最多在93.75ms内把温度转换为数字;12位分辨率时,最多在750ms内把温度值转换为数字,速度更快;(8)测量结果直接输出数字温度信号,以“一线总线“串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力;(9)负压特性,电源极性接反时,芯片不会因发热而烧毁,但不能正常工作。第51页/共56页2.8 集成数字温度传感器 2、DS1820 的结构 内部结构:64位光刻ROM、温度传感器、非挥发的温度报警触发器HT和HL、配置寄存器。第52页/共56页2.8 集成数字
24、温度传感器3、DS1820 工作原理第53页/共56页2.8 集成数字温度传感器4、DS18B20使用中注意事项(1)较小的硬件开销需要相对复杂的软件进行补偿,由于DS1820与微处理器间采用串行数据传送,因此,在对DS1820进行读写编程时,必须严格地保证读写时序,否则将无法读取测温结果。在使用VC等高级语言进行系统程序设计时,对DS1820 操作部分仍要采用汇编语言实现。(2)连接DS1820 的总线电缆是有长度限制的。试验中,当采用普通信号电缆传输长度超过50 m时,读取的测温数据将发生错误;当将总线电缆改为双绞线带屏蔽电缆时,正常通讯距离可达150m;当采用每米绞合次数更多的双绞线带屏蔽电缆时,正常通讯距离进一步加长,这种情况主要是由总线分布电容使信号波形产生畸变造成的。因此,在用DS1820进行长距离测温系统设计时,要充分考虑总线分布电容和阻抗匹配问题。(3)在DS1820测温程序设计中,向DS1820 发出温度转换命令后,程序总要等待DS1820的返回信号,一旦某个DS1820接触不好或断线,当程序读该DS1820 时,将没有返回信号,程序将进入死循环,这一点在进行DS1820硬件连接和软件设计时也要给予一定的重视。第54页/共56页第55页/共56页谢谢您的观看!第56页/共56页