2021-2022学年江苏省南京市二十九中学、汇文校中考数学对点突破模拟试卷含解析.doc

上传人:可**** 文档编号:73704418 上传时间:2023-02-21 格式:DOC 页数:23 大小:867.04KB
返回 下载 相关 举报
2021-2022学年江苏省南京市二十九中学、汇文校中考数学对点突破模拟试卷含解析.doc_第1页
第1页 / 共23页
2021-2022学年江苏省南京市二十九中学、汇文校中考数学对点突破模拟试卷含解析.doc_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《2021-2022学年江苏省南京市二十九中学、汇文校中考数学对点突破模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2021-2022学年江苏省南京市二十九中学、汇文校中考数学对点突破模拟试卷含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )ABCD2的平方根是( )A2BC2D3把不等式组的解集表示在数轴上,下列选项正确的是()ABCD4下列函数中,二次函数是( )Ay4x+5Byx(2x3)Cy(x+4)2x2Dy

2、5在ABC中,点D、E分别在边AB、AC上,如果AD=1,BD=3,那么由下列条件能够判断DEBC的是()ABCD6小带和小路两个人开车从A城出发匀速行驶至B城在整个行驶过程中,小带和小路两人车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示有下列结论;A,B两城相距300 km;小路的车比小带的车晚出发1 h,却早到1 h;小路的车出发后2.5 h追上小带的车;当小带和小路的车相距50 km时,t或t.其中正确的结论有()ABCD7将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( )A向左平移1个单位B向右平移3个单位C向上平移3个单位D向下平移1个单

3、位8如图所示的图形为四位同学画的数轴,其中正确的是( )ABCD9一元一次不等式组的解集中,整数解的个数是( )A4 B5 C6 D710如图所示,在ABC中,C=90,AC=4,BC=3,将ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BD两点间的距离为( )A2BCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图所示,某办公大楼正前力有一根高度是15米的旗杆ED,从办公楼顶点A测得族杆顶端E的俯角是45,旗杆底端D到大楼前梯坎底端C的距离DC是20米,梯坎坡长BC是13米,梯坎坡度i=1:2.4,则大楼AB的高度的为_米12若代数式的值为零,则x=_

4、13如图,六边形ABCDEF的六个内角都相等若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_14如图,ABCD,BE交CD于点D,CEBE于点E,若B=34,则C的大小为_度15如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将CDO以C为旋转中心逆时针旋转90后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:_16若一个棱柱有7个面,则它是_棱柱三、解答题(共8题,共72分)17(8分)如图,求证:。18(8分)某小区为了安全起见,决定将小区内的滑滑板的倾斜角由45调为30,如图,已知原滑滑板AB的长为4米,点D,B,

5、C在同一水平地面上,调整后滑滑板会加长多少米?(结果精确到0.01米,参考数据:,)19(8分)如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把ADC绕点C逆时针旋转90得ADC,连接ED,抛物线()过E,A两点(1)填空:AOB= ,用m表示点A的坐标:A( , );(2)当抛物线的顶点为A,抛物线与线段AB交于点P,且时,DOE与ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MNy轴,垂足为N:求a,b,m满足的关系

6、式;当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围20(8分)如图1,在RtABC中,C=90,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=AB,连接DE将ADE绕点A逆时针方向旋转,记旋转角为(1)问题发现当=0时,= ;当=180时,= (2)拓展探究试判断:当0360时,的大小有无变化?请仅就图2的情形给出证明;(3)问题解决在旋转过程中,BE的最大值为 ;当ADE旋转至B、D、E三点共线时,线段CD的长为 21(8分)计算:|(2)0+2cos45 解方程: =122(10分)已知,平面直角坐标系中的点A(a,1),taba2b2

7、(a,b是实数)(1)若关于x的反比例函数y过点A,求t的取值范围(2)若关于x的一次函数ybx过点A,求t的取值范围(3)若关于x的二次函数yx2+bx+b2过点A,求t的取值范围23(12分)在平面直角坐标系xOy中,将抛物线(m0)向右平移个单位长度后得到抛物线G2,点A是抛物线G2的顶点(1)直接写出点A的坐标;(2)过点(0,)且平行于x轴的直线l与抛物线G2交于B,C两点当BAC90时求抛物线G2的表达式;若60BAC120,直接写出m的取值范围24已知开口向下的抛物线y=ax2-2ax+2与y轴的交点为A,顶点为B,对称轴与x轴的交点为C,点A与点D关于对称轴对称,直线BD与x轴

8、交于点M,直线AB与直线OD交于点N(1)求点D的坐标.(2)求点M的坐标(用含a的代数式表示).(3)当点N在第一象限,且OMB=ONA时,求a的值参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是,故选:D.【点睛】本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.2、D【解析】先化简,然后再根据平方根的定义求解即可【详解】=2,2的平方根是,的平方根是故选D【点睛

9、】本题考查了平方根的定义以及算术平方根,先把正确化简是解题的关键,本题比较容易出错3、C【解析】求得不等式组的解集为x1,所以C是正确的【详解】解:不等式组的解集为x1故选C【点睛】本题考查了不等式问题,在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示4、B【解析】A. y=-4x+5是一次函数,故此选项错误;B.y= x(2x-3)=2x2-3x,是二次函数,故此选项正确;C.y=(x+4)2x2=8x+16,为一次函数,故此选项错误;D.y=是组合函数,故此选项错误.故选B.5、D【解析】如图,AD=1,BD=3,当时,又DAE=BAC,ADEABC,ADE=B,DEBC

10、,而根据选项A、B、C的条件都不能推出DEBC,故选D6、C【解析】观察图象可判断,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断,再令两函数解析式的差为50,可求得t,可判断,可得出答案【详解】由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,都正确;设小带车离开A城的距离y与t的关系式为y小带kt,把(5,300)代入可求得k60,y小带60t,设小路车离开A城的距离y与t的关系式为y小路mtn,把(1,0)和(4,300)代入可得解得y小路100t

11、100,令y小带y小路,可得60t100t100,解得t2.5,即小带和小路两直线的交点横坐标为t2.5,此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,不正确;令|y小带y小路|50,可得|60t100t100|50,即|10040t|50,当10040t50时,可解得t,当10040t50时,可解得t,又当t时,y小带50,此时小路还没出发,当t时,小路到达B城,y小带250.综上可知当t的值为或或或时,两车相距50 km,不正确故选C.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间7、D【解析】A.平移后,得y=(x+1

12、)2,图象经过A点,故A不符合题意;B.平移后,得y=(x3)2,图象经过A点,故B不符合题意;C.平移后,得y=x2+3,图象经过A点,故C不符合题意;D.平移后,得y=x21图象不经过A点,故D符合题意;故选D.8、D【解析】根据数轴三要素:原点、正方向、单位长度进行判断.【详解】A选项图中无原点,故错误;B选项图中单位长度不统一,故错误;C选项图中无正方向,故错误;D选项图形包含数轴三要素,故正确;故选D.【点睛】本题考查数轴的画法,熟记数轴三要素是解题的关键.9、C【解析】试题分析:解不等式得:,解不等式,得:x5,不等式组的解集是,整数解为0,1,2,3,4,5,共6个,故选C考点:

13、一元一次不等式组的整数解10、C【解析】解:连接BD在ABC中,C=90,AC=4,BC=3,AB=2将ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,AE=4,DE=3,BE=2在RtBED中,BD=故选C点睛:本题考查了勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系题目整体较为简单,适合随堂训练二、填空题(本大题共6个小题,每小题3分,共18分)11、42【解析】延长AB交DC于H,作EGAB于G,则GH=DE=15米,EG=DH,设BH=x米,则CH=2.4x米,在RtBCH中,BC=13米,由勾股定理得出方程,解方程求出BH

14、=5米,CH=12米,得出BG、EG的长度,证明AEG是等腰直角三角形,得出AG=EG=12+20=32(米),即可得出大楼AB的高度【详解】延长AB交DC于H,作EGAB于G,如图所示:则GH=DE=15米,EG=DH, 梯坎坡度i=1:2.4,BH:CH=1:2.4,设BH=x米,则CH=2.4x米,在RtBCH中,BC=13米,由勾股定理得:x2+(2.4x)2=132,解得:x=5,BH=5米,CH=12米,BG=GH-BH=15-5=10(米),EG=DH=CH+CD=12+20=32(米),=45,EAG=90-45=45,AEG是等腰直角三角形,AG=EG=32(米),AB=AG

15、+BG=32+10=42(米);故答案为42【点睛】本题考查了解直角三角形的应用-坡度、俯角问题;通过作辅助线运用勾股定理求出BH,得出EG是解决问题的关键12、3【解析】由题意得,=0,解得:x=3,经检验的x=3是原方程的根13、2【解析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是110,所以通过适当的向外作延长线,可得到等边三角形,进而求解【详解】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P六边形ABCDEF的六个角都是110,六边形ABCDEF的每一个外角的度数都是60AHF、BGC、DPE、GHP都是等边三角形GC=BC=3,DP=DE

16、=1GH=GP=GC+CD+DP=3+3+1=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-1=1六边形的周长为1+3+3+1+4+1=2故答案为2【点睛】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长是非常完美的解题方法,注意学习并掌握14、56【解析】解:ABCD, 又CEBE,RtCDE中, 故答案为56.15、(4,2)【解析】利用图象旋转和平移可以得到结果.【详解】解:CDO绕点C逆时针旋转90,得到CBD,则BD=OD=2,点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个单位,得到OAD,点D向下平移

17、4个单位故点D坐标为(4,2),故答案为(4,2)【点睛】平移和旋转:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移.定义在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角度叫做旋转角.16、5【解析】分析:根据n棱柱的特点,由n个侧面和两个底面构成,可判断.详解:由题意可知:7-2=5.故答案为5.点睛:此题主要考查了棱柱的概念,根据棱柱的底面和侧面的关系求解是解题关键.三、解答题(共8题,共72分)17、见解析【解析】据1=2可得BAC=EAD,再加上条件AB=AE,C=

18、D可证明ABCAED【详解】证明:1=2,1+EAC=2+EAC,即BAC=EAD在ABC和AED中,ABCAED(AAS)【点睛】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角18、改善后滑板会加长1.1米【解析】在RtABC中,根据AB=4米,ABC=45,求出AC的长度,然后在RtADC中,解直角三角形求AD的长度,用AD-AB即可求出滑板加长的长度【详解】解:在RtABC中,AC=ABsin45=4=,在R

19、tADC中,AD=2AC=,AD-AB=-41.1答:改善后滑板会加长1.1米【点睛】本题主要考查了解直角三角形的应用,利用这两个直角三角形公共的直角边解直角三角形是解答本题的关键19、(1)45;(m,m);(2)相似;(3);【解析】试题分析:(1)由B与C的坐标求出OB与OC的长,进一步表示出BC的长,再证三角形AOB为等腰直角三角形,即可求出所求角的度数;由旋转的性质得,即可确定出A坐标;(2)DOEABC表示出A与B的坐标,由,表示出P坐标,由抛物线的顶点为A,表示出抛物线解析式,把点E坐标代入即可得到m与n的关系式,利用三角形相似即可得证;(3)当E与原点重合时,把A与E坐标代入,

20、整理即可得到a,b,m的关系式;抛物线与四边形ABCD有公共点,可得出抛物线过点C时的开口最大,过点A时的开口最小,分两种情况考虑:若抛物线过点C(3m,0),此时MN的最大值为10,求出此时a的值;若抛物线过点A(2m,2m),求出此时a的值,即可确定出抛物线与四边形ABCD有公共点时a的范围试题解析:(1)B(2m,0),C(3m,0),OB=2m,OC=3m,即BC=m,AB=2BC,AB=2m=0B,ABO=90,ABO为等腰直角三角形,AOB=45,由旋转的性质得:OD=DA=m,即A(m,m);故答案为45;m,m;(2)DOEABC,理由如下:由已知得:A(2m,2m),B(2m

21、,0),P(2m,m),A为抛物线的顶点,设抛物线解析式为,抛物线过点E(0,n),即m=2n,OE:OD=BC:AB=1:2,EOD=ABC=90,DOEABC;(3)当点E与点O重合时,E(0,0),抛物线过点E,A,整理得:,即;抛物线与四边形ABCD有公共点,抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为10,a(3m)2(1+am)3m=0,整理得:am=,即抛物线解析式为,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时,a=

22、;若抛物线过点A(2m,2m),则,解得:am=2,m=2,a=1,则抛物线与四边形ABCD有公共点时a的范围为考点:1二次函数综合题;2压轴题;3探究型;4最值问题20、(1);(2)无变化,证明见解析;(3)2+2 +1或1.【解析】(1)先判断出DECB,进而得出比例式,代值即可得出结论;先得出DEBC,即可得出,再用比例的性质即可得出结论;(2)先CAD=BAE,进而判断出ADCAEB即可得出结论;(3)分点D在BE的延长线上和点D在BE上,先利用勾股定理求出BD,再借助(2)结论即可得出CD【详解】解:(1)当=0时,在RtABC中,AC=BC=2,A=B=45,AB=2,AD=DE

23、=AB=,AED=A=45,ADE=90,DECB,故答案为,当=180时,如图1,DEBC,即:,故答案为;(2)当0360时,的大小没有变化,理由:CAB=DAE,CAD=BAE,ADCAEB,;(3)当点E在BA的延长线时,BE最大,在RtADE中,AE=AD=2,BE最大=AB+AE=2+2;如图2,当点E在BD上时,ADE=90,ADB=90,在RtADB中,AB=2,AD=,根据勾股定理得,BD=,BE=BD+DE=+,由(2)知,CD=+1,如图3, 当点D在BE的延长线上时,在RtADB中,AD=,AB=2,根据勾股定理得,BD=,BE=BDDE=,由(2)知,CD=1故答案为

24、 +1或1【点睛】此题是相似形综合题,主要考查了等腰直角三角形的性质和判定,勾股定理,相似三角形的判定和性质,比例的基本性质及分类讨论的数学思想,解(1)的关键是得出DEBC,解(2)的关键是判断出ADCAEB,解(3)关键是作出图形求出BD,是一道中等难度的题目21、(1)1;(2)x=1是原方程的根【解析】(1)直接化简二次根式进而利用零指数幂的性质以及特殊角三角函数值进而得出答案;(2)直接去分母再解方程得出答案【详解】(1)原式=21+2=1+=1;(2)去分母得:3x=x3+1,解得:x=1,检验:当x=1时,x30,故x=1是原方程的根【点睛】此题主要考查了实数运算和解分式方程,正

25、确掌握解分式方程的方法是解题关键22、(1)t;(2)t3;(3)t1【解析】(1)把点A的坐标代入反比例函数解析式求得a的值;然后利用二次函数的最值的求法得到t的取值范围(2)把点A的坐标代入一次函数解析式求得a=;然后利用二次函数的最值的求法得到t的取值范围(3)把点A的坐标代入二次函数解析式求得以a2+b2=1-ab;然后利用非负数的性质得到t的取值范围【详解】解:(1)把A(a,1)代入y得到:1,解得a1,则taba2b2b1b2(b)2因为抛物线t(b)2的开口方向向下,且顶点坐标是(,),所以t的取值范围为:t;(2)把A(a,1)代入ybx得到:1ab,所以a,则taba2b2

26、(a2+b2)+1(b+)2+33,故t的取值范围为:t3;(3)把A(a,1)代入yx2+bx+b2得到:1a2+ab+b2,所以ab1(a2+b2),则taba2b212(a2+b2)1,故t的取值范围为:t1【点睛】本题考查了反比例函数、一次函数以及二次函数的性质代入求值时,注意配方法的应用23、(1)(,2);(2)y(x)22;【解析】(1)先求出平移后是抛物线G2的函数解析式,即可求得点A的坐标;(2)由(1)可知G2的表达式,首先求出AD的值,利用等腰直角的性质得出BD=AD=,从而求出点B的坐标,代入即可得解;分别求出当BAC=60时,当BAC=120时m的值,即可得出m的取值

27、范围【详解】(1)将抛物线G1:ymx22(m0)向右平移个单位长度后得到抛物线G2,抛物线G2:ym(x)22,点A是抛物线G2的顶点.点A的坐标为(,2)(2)设抛物线对称轴与直线l交于点D,如图1所示点A是抛物线顶点,ABACBAC90,ABC为等腰直角三角形,CDAD,点C的坐标为(2,)点C在抛物线G2上,m(2)22,解得:依照题意画出图形,如图2所示同理:当BAC60时,点C的坐标为(1,);当BAC120时,点C的坐标为(3,)60BAC120,点(1,)在抛物线G2下方,点(3,)在抛物线G2上方,解得:【点睛】此题考查平移中的坐标变换,二次函数的性质,待定系数法求二次函数的

28、解析式,等腰直角三角形的判定和性质,等边三角形的判定和性质,熟练掌握坐标系中交点坐标的计算方法是解本题的关键,利用参数顶点坐标和交点坐标是解本题的难点.24、(1)D(2,2);(2);(3)【解析】(1)令x=0求出A的坐标,根据顶点坐标公式或配方法求出顶点B的坐标、对称轴直线,根据点A与点D关于对称轴对称,确定D点坐标.(2)根据点B、D的坐标用待定系数法求出直线BD的解析式,令y=0,即可求得M点的坐标.(3)根据点A、B的坐标用待定系数法求出直线AB的解析式,求直线OD的解析式,进而求出交点N的坐标,得到ON的长.过A点作AEOD,可证AOE为等腰直角三角形,根据OA=2,可求得AE、

29、OE的长,表示出EN的长.根据tanOMB=tanONA,得到比例式,代入数值即可求得a的值.【详解】(1)当x=0时,A点的坐标为(0,2)顶点B的坐标为:(1,2-a),对称轴为x= 1,点A与点D关于对称轴对称D点的坐标为:(2,2)(2)设直线BD的解析式为:y=kx+b把B(1,2-a)D(2,2)代入得: ,解得:直线BD的解析式为:y=ax+2-2a当y=0时,ax+2-2a=0,解得:x=M点的坐标为:(3)由D(2,2)可得:直线OD解析式为:y=x设直线AB的解析式为y=mx+n,代入A(0,2)B(1,2-a)可得: 解得:直线AB的解析式为y= -ax+2联立成方程组: ,解得:N点的坐标为:()ON=()过A点作AEOD于E点,则AOE为等腰直角三角形.OA=2OE=AE=,EN=ON-OE=()-=)M,C(1,0), B(1,2-a)MC=,BE=2-aOMB=ONAtanOMB=tanONA,即解得:a=或抛物线开口向下,故a0, a=舍去,【点睛】本题是一道二次函数与一次函数及三角函数综合题,掌握并灵活应用二次函数与一次函数的图象与性质,以及构建直角三角形借助点的坐标使用相等角的三角函数是解题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 生活常识

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁