2021-2022学年北京市北京理工大附中中考数学最后冲刺浓缩精华卷含解析.doc

上传人:可**** 文档编号:73702912 上传时间:2023-02-21 格式:DOC 页数:23 大小:1.16MB
返回 下载 相关 举报
2021-2022学年北京市北京理工大附中中考数学最后冲刺浓缩精华卷含解析.doc_第1页
第1页 / 共23页
2021-2022学年北京市北京理工大附中中考数学最后冲刺浓缩精华卷含解析.doc_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《2021-2022学年北京市北京理工大附中中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《2021-2022学年北京市北京理工大附中中考数学最后冲刺浓缩精华卷含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2021-2022中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,内接于,若,则ABCD2如图,在ABC中,AED=B,DE=6,AB=10,AE=8,则BC的长度为( )

2、ABC3D3已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A11B16C17D16或174如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是( )ABCD5下列计算正确的是()A2m+3n=5mn Bm2m3=m6 Cm8m6=m2 D(m)3=m36某大型企业员工总数为28600人,数据“28600”用科学记数法可表示为()A0.286105 B2.86105 C28.6103 D2.861047下列计算正确的是()A5x2x=3xB(a+3)2=a2+9C(a3)2=a5Da2pap=a3p8已知二次函数y=ax2+bx+c(a1)的图象如图所示

3、,则下列结论:a、b同号;当x=1和x=3时,函数值相等;4a+b=1;当y=2时,x的值只能取1;当1x5时,y1其中,正确的有()A2个B3个C4个D5个9下列几何体是棱锥的是( )ABCD10已知正方形ABCD的边长为4cm,动点P从A出发,沿AD边以1cm/s的速度运动,动点Q从B出发,沿BC,CD边以2cm/s的速度运动,点P,Q同时出发,运动到点D均停止运动,设运动时间为x(秒),BPQ的面积为y(cm2),则y与x之间的函数图象大致是( )ABCD11如图,已知在RtABC中,ABC=90,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC

4、上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:EDBC;A=EBA;EB平分AED;ED=AB中,一定正确的是( )ABCD12如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球_个14一个圆锥的母线长15CM.高为9CM.则侧面展开图的圆心角_。15如图,在55的正方形(每个小正方

5、形的边长为1)网格中,格点上有A、B、C、D、E五个点,如果要求连接两个点之后线段的长度大于3且小于4,则可以连接_. (写出一个答案即可)16两圆内切,其中一个圆的半径长为6,圆心距等于2,那么另一个圆的半径长等于_17我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是 尺.18已知抛物线yx2mx2m,在自变量x的值满足1x2的情况下若对应的函数值y的最大值

6、为6,则m的值为_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,直线y1=x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点求y与x之间的函数关系式;直接写出当x0时,不等式x+b的解集;若点P在x轴上,连接AP把ABC的面积分成1:3两部分,求此时点P的坐标20(6分)珠海某企业接到加工“无人船”某零件5000个的任务在加工完500个后,改进了技术,每天加工的零件数量是原来的1.5倍,整个加工过程共用了35天完成求技术改进后每天加工零件的数量21(6分)如图,一次函数ykxb的图象与反比例函数y的图象

7、交于点A(3,m8),B(n,6)两点(1)求一次函数与反比例函数的解析式;(2)求AOB的面积22(8分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.求与之间的函数关系式;如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.23(8分)解不等式组:,并把解集在数轴上表示出来.24(10分)如图,AD是ABC

8、的中线,AD12,AB13,BC10,求AC长25(10分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,与函数的图象的一个交点为 (1)求,的值;(2)将线段向右平移得到对应线段,当点落在函数的图象上时,求线段扫过的面积26(12分)如图1,在直角梯形ABCD中,ABBC,ADBC,点P为DC上一点,且APAB,过点C作CEBP交直线BP于E.(1) 若,求证:;(2) 若ABBC 如图2,当点P与E重合时,求的值; 如图3,设DAP的平分线AF交直线BP于F,当CE1,时,直接写出线段AF的长.27(12分)对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于

9、p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.若其不变长度为零,求b的值;若1b3,求其不变长度q的取值范围;(3) 记函数y=x2-2x(xm)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0q3,则m的取值范围为 .参考答案一、选择题(本

10、大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据圆周角定理求出,根据三角形内角和定理计算即可【详解】解:由圆周角定理得,故选:B【点睛】本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键2、A【解析】AED=B,A=AADEACB,DE=6,AB=10,AE=8,解得BC.故选A.3、D【解析】试题分析:由等腰三角形的两边长分别是5和6,可以分情况讨论其边长为5,5,6或者5,6,6,均满足三角形两边之和大于第三边,两边之差小于第三边的条件,所以此等腰三角形的周长为5+5+6=16或5+6

11、+6=17.故选项D正确.考点:三角形三边关系;分情况讨论的数学思想4、B【解析】根据俯视图中每列正方形的个数,再画出从正面看得到的图形即可【详解】解:主视图,如图所示:故选B【点睛】本题考查由三视图判断几何体;简单组合体的三视图用到的知识点为:主视图是从物体的正面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数5、C【解析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解【详解】解:A、2m与3n不是同类项,不能合并,故错误;B、m2m3=m5,故错误;C、正确

12、;D、(-m)3=-m3,故错误;故选:C【点睛】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.6、D【解析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】28600=2.861故选D【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a10n,其中1|a|10,确定a与n的值是解题的关键7、D【解析】直接利用合并同类项法则以及完全平方公式和整式的乘除运算法则分别计算即可得出答案【详解】解:A5x2x=7x,故此选项错误;B(a+3)2=a2+6a+9,故此选项错误;C(a3)2=a6,故

13、此选项错误;Da2pap=a3p,正确故选D【点睛】本题主要考查了合并同类项以及完全平方公式和整式的乘除运算,正确掌握运算法则是解题的关键8、A【解析】根据二次函数的性质和图象可以判断题目中各个小题是否成立【详解】由函数图象可得,a1,b1,即a、b异号,故错误,x=-1和x=5时,函数值相等,故错误,-2,得4a+b=1,故正确,由图象可得,当y=-2时,x=1或x=4,故错误,由图象可得,当-1x5时,y1,故正确,故选A【点睛】考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答9、D【解析】分析:根据棱锥的概念判断即可.A是三棱柱,错误;B是圆

14、柱,错误;C是圆锥,错误;D是四棱锥,正确.故选D.点睛:本题考查了立体图形的识别,关键是根据棱锥的概念判断.10、B【解析】根据题意,Q点分别在BC、CD上运动时,形成不同的三角形,分别用x表示即可.【详解】(1)当0x2时,BQ2x当2x4时,如下图 由上可知故选:B.【点睛】本题是双动点问题,解答时要注意讨论动点在临界两侧时形成的不同图形,并要根据图形列出函数关系式.11、B【解析】解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:根据作图过程可知:PB=CP,D为BC的中点,PD垂直平分BC,EDBC正确.ABC=90,PDAB.E为AC的中点,EC=EA,EB=EC.A=E

15、BA正确;EB平分AED错误;ED=AB正确.正确的有.故选B考点:线段垂直平分线的性质.12、B【解析】主视图、俯视图是分别从物体正面、上面看,所得到的图形【详解】综合主视图和俯视图,底层最少有个小立方体,第二层最少有个小立方体,因此搭成这个几何体的小正方体的个数最少是个故选:B【点睛】此题考查由三视图判断几何体,解题关键在于识别图形二、填空题:(本大题共6个小题,每小题4分,共24分)13、8【解析】试题分析:设红球有x个,根据概率公式可得,解得:x8.考点:概率.14、288【解析】母线长为15cm,高为9cm,由勾股定理可得圆锥的底面半径;由底面周长与扇形的弧长相等求得圆心角.【详解】

16、解:如图所示,在RtSOA中,SO=9,SA=15;则: 设侧面属开图扇形的国心角度数为n,则由 得n=288故答案为:288.【点睛】本题利用了勾股定理,弧长公式,圆的周长公式和扇形面积公式求解.15、答案不唯一,如:AD【解析】根据勾股定理求出,根据无理数的估算方法解答即可【详解】由勾股定理得:,故答案为答案不唯一,如:AD【点睛】本题考查了无理数的估算和勾股定理,如果直角三角形的两条直角边长分别是,斜边长为,那么16、4或1【解析】两圆内切,一个圆的半径是6,圆心距是2,另一个圆的半径=6-2=4;或另一个圆的半径=6+2=1,故答案为4或1【点睛】本题考查了根据两圆位置关系来求圆的半径

17、的方法注意圆的半径是6,要分大圆和小圆两种情况讨论17、1.【解析】试题分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题,根据勾股定理可求出葛藤长为=1(尺)故答案为1考点:平面展开最短路径问题18、m=8或【解析】求出抛物线的对称轴分三种情况进行讨论即可.【详解】抛物线的对称轴,抛物线开口向下,当,即时,抛物线在1x2时,随的增大而减小,在时取得最大值,即 解得符合题意.当即时,抛物线在1x2时,在时取得最大值,即 无解.当,即时,抛物线在1x2时,随的增大而增大,在时取得最大值,即 解得符合题意.综上所述,m的值为8或故答案为:

18、8或【点睛】考查二次函数的图象与性质,注意分类讨论,不要漏解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1);(2)x1;(3)P(,0)或(,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x0时,不等式x+b的解集为x1;(3)分两种情况进行讨论,AP把ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3=,或OP=4=,进而得出点P的坐标详解:(1)把A(1,m)代入y1=x+4,可得m=1+4=3,A(1,3),把A(1,3)代入双曲

19、线y=,可得k=13=3,y与x之间的函数关系式为:y=;(2)A(1,3),当x0时,不等式x+b的解集为:x1;(3)y1=x+4,令y=0,则x=4,点B的坐标为(4,0),把A(1,3)代入y2=x+b,可得3=+b,b=,y2=x+,令y2=0,则x=3,即C(3,0),BC=7,AP把ABC的面积分成1:3两部分,CP=BC=,或BP=BC=OP=3=,或OP=4=,P(,0)或(,0)点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点20、技术改进后每天加工1个零件

20、【解析】分析:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,根据题意列出分式方程,从而得出方程的解并进行检验得出答案详解:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,根据题意可得, 解得x=100, 经检验x=100是原方程的解,则改进后每天加工1答:技术改进后每天加工1个零件点睛:本题主要考查的是分式方程的应用,属于基础题型根据题意得出等量关系是解题的关键,最后我们还必须要对方程的解进行检验21、(1)y=-,y=-2x-4(2)1【解析】(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到

21、点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据SAOB=SAOC+SBOC列式计算即可得解【详解】(1)将A(3,m+1)代入反比例函数y=得,=m+1,解得m=6,m+1=6+1=2,所以,点A的坐标为(3,2),反比例函数解析式为y=,将点B(n,6)代入y=得,=6,解得n=1,所以,点B的坐标为(1,6),将点A(3,2),B(1,6)代入y=kx+b得,解得,所以,一次函数解析式为y=2x4;(2)设AB与x轴相交于点C,令2x4=0解得x=2,所以,点C的坐标为(2,0),所以,OC=

22、2,SAOB=SAOC+SBOC,=22+26,=2+6,=1考点:反比例函数与一次函数的交点问题22、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围【详解】(1)由题意得: 故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700240

23、,解得x46,设利润为w=(x-30)y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,-100,x50时,w随x的增大而增大,x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=5,x1=55,x2=45,如图所示,由图象得:当45x55时,捐款后每天剩余利润不低于3600元【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应

24、用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点23、x【解析】分析:分别求解两个不等式,然后按照不等式的确定方法求解出不等式组的解集,然后表示在数轴上即可.详解:,由得,x2;由得,x,故此不等式组的解集为:x在数轴上表示为:点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键24、2.【解析】根据勾股定理逆定理,证ABD是直角三角形,得ADBC,可证AD垂直平分BC,所以AB=AC.【详解】解:AD是ABC的中线,且BC=10,BD=BC=112+1

25、22=22,即BD2+AD2=AB2,ABD是直角三角形,则ADBC,又CD=BD,AC=AB=2【点睛】本题考核知识点:勾股定理、全等三角形、垂直平分线.解题关键点:熟记相关性质,证线段相等.25、(1)m=4, n=1,k=3.(2)3.【解析】(1) 把点,分别代入直线中即可求出m=4,再把代入直线即可求出n=1.把代入函数求出k即可;(2)由(1)可求出点B的坐标为(0,4),点B是由点B向右平移得到,故点B的纵坐标为4,把它代入反比例函数解析式即可求出它的横坐标,根据平移的知识可知四边形AABB是平行四边形,再根据平行四边形的面积计算公式计算即可.【详解】解:(1)把点,分别代入直线

26、中得:-4+m=0, m=4,直线解析式为.把代入得:n=-3+4=1.点C的坐标为(3,1)把(3,1)代入函数得:解得:k=3.m=4, n=1,k=3.(2)如图,设点B的坐标为(0,y)则y=-0+4=4点B的坐标是(0,4)当y=4时, 解得, 点B( ,4)A,B是由A,B向右平移得到,四边形AABB是平行四边形,故四边形AABB的面积=4=3.【点睛】本题考查了一次函数与反比例函数的交点问题及函数的平移,利用数形结合思想作出图形是解题的关键.26、(1)证明见解析;(2);3.【解析】(1) 过点A作AFBP于F,根据等腰三角形的性质得到BF=BP,易证RtABFRtBCE,根据

27、相似三角形的性质得到,即可证明BP=CE.(2) 延长BP、AD交于点F,过点A作AGBP于G,证明ABGBCP,根据全等三角形的性质得BGCP,设BG1,则PGPC1,BCAB,在RtABF中,由射影定理知,AB2BGBF5,即可求出BF5,PF5113,即可求出的值; 延长BF、AD交于点G,过点A作AHBE于H,证明ABHBCE,根据全等三角形的性质得BGCP,设BHBPCE1,又,得到PG,BG,根据射影定理得到AB2BHBG ,即可求出AB ,根据勾股定理得到,根据等腰直角三角形的性质得到.【详解】解:(1) 过点A作AFBP于FAB=APBF=BP,RtABFRtBCEBP=CE.

28、 (2) 延长BP、AD交于点F,过点A作AGBP于GABBC ABGBCP(AAS) BGCP设BG1,则PGPC1 BCAB在RtABF中,由射影定理知,AB2BGBF5BF5,PF5113 延长BF、AD交于点G,过点A作AHBE于HABBC ABHBCE(AAS)设BHBPCE1 PG,BGAB2BHBG AB AF平分PAD,AH平分BAPFAHBAD45AFH为等腰直角三角形 【点睛】考查等腰三角形的性质,勾股定理,射影定理,平行线分线段成比例定理等,解题的关键是作出辅助线.难度较大.27、详见解析.【解析】试题分析:(1)根据定义分别求解即可求得答案;(1)首先由函数y=1x1b

29、x=x,求得x(1xb1)=2,然后由其不变长度为零,求得答案;由,利用1b3,可求得其不变长度q的取值范围;(3)由记函数y=x11x(xm)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G1,可得函数G的图象关于x=m对称,然后根据定义分别求得函数的不变值,再分类讨论即可求得答案试题解析:解:(1)函数y=x1,令y=x,则x1=x,无解;函数y=x1没有不变值;y=x-1 =,令y=x,则,解得:x=1,函数的不变值为1,q=1(1)=1函数y=x1,令y=x,则x=x1,解得:x1=2,x1=1,函数y=x1的不变值为:2或1,q=12=1;(1)函数y=1x1bx,令y=x,则

30、x=1x1bx,整理得:x(1xb1)=2q=2,x=2且1xb1=2,解得:b=1;由知:x(1xb1)=2,x=2或1xb1=2,解得:x1=2,x1=1b3,1x11,12q12,1q1;(3)记函数y=x11x(xm)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G1,函数G的图象关于x=m对称,G:y= 当x11x=x时,x3=2,x4=3;当(1mx)11(1mx)=x时,=1+8m,当2,即m时,q=x4x3=3;当2,即m时,x5=,x6=当m2时,x3=2,x4=3,x62,x4x63(不符合题意,舍去);当x5=x4时,m=1,当x6=x3时,m=3;当2m1时,x3=2(舍去),x4=3,此时2x5x4,x62,q=x4x63(舍去);当1m3时,x3=2(舍去),x4=3,此时2x5x4,x62,q=x4x63;当m3时,x3=2(舍去),x4=3(舍去),此时x53,x62,q=x5x63(舍去);综上所述:m的取值范围为1m3或m点睛:本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性注意掌握分类讨论思想的应用是解答此题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 生活常识

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁