《2023年《探索勾股定理》说课稿.docx》由会员分享,可在线阅读,更多相关《2023年《探索勾股定理》说课稿.docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年探索勾股定理说课稿 探索勾股定理说课稿 一、教材分析 教材所处的地位与作用 “探索勾股定理”是人教版八年级数学下册内容。“勾股定理”是安排在学生学习了三角形、全等三角形、等腰三角形等有关知识之后,它揭示了直角三角形三边之间的一种美妙关系,将数与形密切联系起来,在几何学中占有非常重要的位置。同时勾股定理在生产、生活中也有很大的用途。 二、教学目标 综上分析及教学大纲要求,本课时教学目标制定如下: 1、知识目标 知道勾股定理的由来,初步理解割补拼接的面积证法。 掌握勾股定理,通过动手操作利用等积法理解勾股定理的证明过程。 2、能力目标 在探索勾股定理的过程中,让学生经历“观察合理猜想归纳
2、验证”的数学思想,并体会数形结合以及由特殊到一般的思想方法,培养学生的观察力、抽象概括能力、创造想象能力以及科学探究问题的能力。 3、情感目标 通过观察、猜想、拼图、证明等操作,使学生深刻感受到数学知识的发生、发展过程。 介绍“赵爽弦图”,让学生感受到中国古代在勾股定理研究方面所取得的伟大成就,激发学生的数学激情及爱国情感。 三、教学重难点 本课重点是掌握勾股定理,让学生深刻感悟到直角三角形三边所具备的特殊关系。由于八年级学生构造能力较低以及对面积证法的不熟悉,因此本课的难点便是勾股定理的证明。 四、教学问题诊断 本 节主要攻克的问题就是本节的难点:勾股定理的证明。我打算采用面积法来讲解,但这
3、种借助于图形的面积来探索、验证数学结论的数形结合思想,对于学生来说, 有些陌生,难以理解,又加之数学课本身的课程特征,在讲解时,没有文科那么深动形象,所以针对这一现状,我在教法和学法上都进行了改进。 五、教法与学法分析 教学方法与手段 针对八年级学生的知识结构和心理特征,本节课选择引导探索法,由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,并利用多媒体进行教学。 学法分析 在教师组织引导下,采用自主探索、合作交流的方式,让学生自己实验,自己获取知识,并感悟学习方法,借此培养学生动手、动口、动脑能力,使学生真正成为学习的主体。让学生感受到自己是学习的主体,增强他们的主动感和责任感,
4、这样对掌握新知会事半功倍。 六、教学流程设计 1、创设情境,引入新课 本节课开始利用多媒体介绍了在北京召开的2023年 国际数学家大会的会标,其图案为“赵爽弦图”,由此导入新课,是为了激发学生的兴趣和民族自豪感,它是课堂教学的重要一环。“好的开始是成功的一半”,在 课的起始阶段迅速集中学生注意力,把他们的思绪带进特定的学习情境中,激发学生浓厚的学习兴趣和强烈的求知欲。多媒体展示这一有意义的图案,可有效开启学 生思维的闸门,激励探究,使学生的学习状态由被动变为主动,在轻松愉悦的氛围中学到知识。 2、观察发现,类比猜想 让学生仔细观察毕达哥拉斯朋友家的瓷砖(图1), 从而得到特殊的等腰直角三角形三
5、边关系,紧接着由特殊到一般,让学生合理猜测:是否任意直角三角形都符合这个“三边关系”的结论?同学们很轻易的得到了结 论。最后对此结论通过在网格中数格子进行验证,让学生经历了“观察合理猜测归纳验证”的这一数学思想。在数格子的验证过程中,发现任意直角三 角形(图2)斜边上长出的正方形中网格不规则,没法数出。通过同学们的讨论,发现数不出来的原因是格子不规则,从而想到了用补或割的方法进行计算,其原则就是由不规则经过割补变为规则。 3、实验探究,证明结论 因为勾股定理的出现,使数学从单一的纯计算进入了几何图形的证明,所以为了让学生感受数形结合这一数学思想,让学生亲自动手,互相协作,拿一块由a2和b2组成
6、的不规则的平面图形经割补,变为规则的c2,又因两块割补前后面积相等,从而得到勾股定理:a2+b2= c2,也因此引入了“等积法”证明勾股定理。 4、练兵之际 这是“总统证法”,此时让学生自己探索,然后讨论。选用“总统证法”,第一是为了让同学们熟悉“等积法”,第二让学生感受数学的地位之高,第三在没有讲解的情况下,学生自己得出了“总统证法”,大大增强了学生的自信心和自豪感。 5、自己动手,拼出弦图 让同学们拿出了提前准备好的四个全等的边长为a、b、c的 直角三角形进行拼图,小组活动,拼出自己喜爱的图形,但有一个前提是所拼出的图形必须能够用等积法证明勾股定理。此时已经是把课堂全部还给了学生,让他们
7、在数学的海洋中驰骋,提供这种学习方式就是为了让孩子们更加开阔,更加自主,更方便于他们到广阔的海洋中去寻找宝藏,学生们拼得很好,并且都给出了正确的 证明,在黑板上尽情地展示了一番。 6、总结反思 通 过这一堂课,我认为数学教学的核心不是知识本身,而是数学的思维方式,而培养这种数学思维方式需要丰富的数学活动。在活动中学生可以用自己创造与体验的方 法来学习数学,这样才能真正的掌握数学,真正拥有数学的思维方式,这一课的学习就是通过让学生自主探索知识,从而将其转化为自己的,真正做到了先激发兴 趣,再合作交流,最后展示成果的自主学习,教学模式也从教师讲授为主转为了学生动脑、动手、自主研究,小组学习讨论交流
8、为主,把数学课堂转化为“数学实验 室”,学生通过自己活动得出结论,使创新精神与实践能力得到了发展。 七、设计说明 1、根据学生的知识结构,我采用的数学流程是:创设情境引入新课观察发现类比猜想实验探究证明结论自己动手拼出弦图总结反思这五部分。这一流程体现了知识的发生、形成和发展的过程,让学生经历了观察猜想归纳验证的思想和数形结合的思想。 2、探索定理采用了面积法,引导学生利用实验由特殊到一般的数学思想对直角三角形三边关系进行了研究,并得出了结论。这种方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好的思维品质的形成有重要作用,对学生终身发展也有很大作用。 探索勾股定理说课稿 探索勾股定理说课稿导语:勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。下面我们来看看探索勾股定理说课稿,欢迎阅读借鉴。一、说教材分析:(. 探索勾股定理说课稿 探索勾股定理说课稿在教学工作者开展教学活动前,很有必要精心设计一份说课稿,说课稿有助于顺利而有效地开展教学活动。那么写说课稿需要注意哪些问题呢?下面是小编为大家收集的. 探索勾股定理说课稿