《面面垂直的判定.pptx》由会员分享,可在线阅读,更多相关《面面垂直的判定.pptx(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、复习回顾复习回顾1.1.在平面几何中在平面几何中 角角 是怎样定义的?是怎样定义的?第1页/共32页O2.2.在立体几何中在立体几何中,异面直线所成的角异面直线所成的角 是怎样定义的?是怎样定义的?3.3.在立体几何中在立体几何中,直线和平面所成的角直线和平面所成的角 是怎样定义的?是怎样定义的?abab三维空间的角三维空间的角 平面角平面角第2页/共32页第3页/共32页第4页/共32页新课引入新课引入拦拦洪洪坝坝水平面水平面第5页/共32页 一个平面内的一条直线把这个平面分成两个部分,其中的一个平面内的一条直线把这个平面分成两个部分,其中的每一部分都叫做每一部分都叫做半平面半平面。一条一条
2、直线直线上的一个上的一个点点把这条把这条直线直线分成两个部分分成两个部分,其中的每其中的每一部分都叫做一部分都叫做射线射线。1、二面角的相关概念:、二面角的相关概念:第6页/共32页OBA 从一条直线出发的两个半平面所组成的图形叫做从一条直线出发的两个半平面所组成的图形叫做二面角二面角。这条直线叫做这条直线叫做二面角的棱二面角的棱。这两个半平面叫做这两个半平面叫做二面角的面二面角的面。平面角由射线平面角由射线-点点-射线构成。射线构成。二面角由半平面二面角由半平面-线线-半平面半平面构成构成。lABPQ2、二面角的表示、二面角的表示第7页/共32页 l二面角二面角 l 二面角二面角CAB DA
3、BCD3、二面角的画法、二面角的画法CEFDAB第8页/共32页如何度量二面角的大小?如何度量二面角的大小?能否转化为平面角来处理?能否转化为平面角来处理?第9页/共32页找一个能变化的平面角找一个能变化的平面角AOBAOB,把它放入二面角的模型把它放入二面角的模型内内,将顶点将顶点O O放在棱上放在棱上,两边紧贴在两个面上。两边紧贴在两个面上。A O l,B O lAOBAOBAOBlll怎样才能找到这样的一个怎样才能找到这样的一个角,它的大小唯一,且由角,它的大小唯一,且由二面角的大小决定?二面角的大小决定?OA,OB不可随意,要使不可随意,要使AOB唯一确定,只有唯一确定,只有OA,OB
4、与棱垂直。与棱垂直。第10页/共32页 缓慢打开教室的门,门打开的角度可以用哪个缓慢打开教室的门,门打开的角度可以用哪个角来表示?角来表示?第11页/共32页1、二面角的平面角的定义、二面角的平面角的定义 以二面角的以二面角的棱棱上任意一点为端上任意一点为端点,在点,在两个面内两个面内分别作分别作垂直垂直于棱的于棱的两条射线,这两条射线所成的两条射线,这两条射线所成的角角叫叫做做二面角的平面角二面角的平面角角 的平面角 一个平面垂直于二面角的棱,并与两半平面分别相交于射线PA、PB垂足为P,则APB叫做二面ABP定义二:定义二:PA l,PB lABp定义一:定义一:二、二面角的平面角二、二面
5、角的平面角第12页/共32页 平面角是直角的二面角叫做平面角是直角的二面角叫做直直二面角二面角.相交成直二面角的两个平相交成直二面角的两个平面面,叫做叫做互相垂直的平面互相垂直的平面.二面角的平面角的三个特征二面角的平面角的三个特征:1.点在棱上点在棱上2.边在面内边在面内3.边与棱垂直边与棱垂直二面角的大小二面角的大小:AOBlA O l,B O l 二面角二面角的大小可以的大小可以用用它的它的平面角平面角来来度量度量,二面角的平面角是多少度二面角的平面角是多少度,就就说这个二面角是多少度说这个二面角是多少度.二面角的大小的范二面角的大小的范围:互相垂直的平面互相垂直的平面:AOB第13页/
6、共32页两个平面垂直的判定两个平面垂直的判定第14页/共32页两个平面互相垂直两个平面互相垂直定义:一般地,如果两个平面相交,且其所定义:一般地,如果两个平面相交,且其所成二面角为直二面角,则两个平面垂直。成二面角为直二面角,则两个平面垂直。记作:记作:ABC画法:第15页/共32页问题引入:问题引入:建筑工人砌墙时,如何检测所砌的建筑工人砌墙时,如何检测所砌的墙面和地面是否垂直?墙面和地面是否垂直?第16页/共32页问题引入问题引入方法一:方法一:第17页/共32页 建建筑筑工工人人砌砌墙墙时时,常常用用一一端端系系有有铅铅锤锤的的线线来来检检查查所所砌砌的墙面是否和地面垂直,如果系有铅锤的
7、线和墙面紧贴,的墙面是否和地面垂直,如果系有铅锤的线和墙面紧贴,问题引入问题引入那么所砌的墙面与地面垂直。那么所砌的墙面与地面垂直。大家知道其中的理论根据吗?大家知道其中的理论根据吗?它就是本节课的内容之一:平面与平面垂直的判定定理。它就是本节课的内容之一:平面与平面垂直的判定定理。第18页/共32页如果一个平面经过了另一个平面的一如果一个平面经过了另一个平面的一条垂线,那么这两个平面互相垂直条垂线,那么这两个平面互相垂直.猜想:第19页/共32页 如果一个平面经过了另一个平面的一条垂线,那如果一个平面经过了另一个平面的一条垂线,那么这两个平面互相垂直。么这两个平面互相垂直。已知:已知:AB,
8、AB=B,AB 求证:求证:.证明:证明:C CD DA AB BE E在平面在平面内过内过B点作直线点作直线BECD,则,则ABE就是二面角就是二面角-CD-的平面角,的平面角,设设=CD,则则BCD.AB,CD ,ABCD.AB,BE ,ABBE.二面角二面角-CD-是是直二面角,直二面角,.第20页/共32页两个平面垂直的判定定理:两个平面垂直的判定定理:线线垂直线线垂直线面垂直线面垂直面面垂直面面垂直一个平面一个平面过过另一个平面的另一个平面的垂线垂线,则这,则这两个平面两个平面垂直垂直.关键是找或作其中一个平面的垂线关键是找或作其中一个平面的垂线第21页/共32页课堂练习:课堂练习:
9、1.如果平面如果平面内有一条直线垂直于平面内有一条直线垂直于平面内的一条内的一条直线,则直线,则.()3.如果平面如果平面内的一条直线垂直于平面内的一条直线垂直于平面内的两条内的两条相交直线相交直线,则则.()一、判断:一、判断:4.若若m,m ,则,则.()2.如果平面如果平面内有一条直线垂直于平面内有一条直线垂直于平面内的两条内的两条 直线,则直线,则.()第22页/共32页1.过平面过平面的一条垂线可作的一条垂线可作_个平面个平面 与平面与平面垂直垂直.2.过一点可作过一点可作_个平面与已知平面垂个平面与已知平面垂 直直.二、填空题:二、填空题:3.过平面过平面的一条斜线,可作的一条斜线
10、,可作_个平个平 面与平面面与平面垂直垂直.4.过平面过平面的一条平行线可作的一条平行线可作_个平个平 面与面与垂直垂直.一一无数无数无数无数一一第23页/共32页例例1、设、设AB是圆是圆O的直径,的直径,PA垂直于圆垂直于圆O所在平面,所在平面,C是圆周上的任意点,求证:面是圆周上的任意点,求证:面PAC 面面PBCPABCO例题讲解例题讲解第24页/共32页例例2、空间四边形、空间四边形ABCD中,已知中,已知AB=3,AC=AD=2,DAC=BAC=BAD=600,求证:平面求证:平面 BCD 平面平面ADCACBDO例题讲解例题讲解第25页/共32页例、已知直线例、已知直线PA垂直正
11、方形垂直正方形ABCD所在的平面,所在的平面,A为垂足。为垂足。求证:平面求证:平面PAC 平面平面PBD。证明:证明:ABDPCO例题讲解例题讲解第26页/共32页例例4、如果一个平面与另一个平面的一条垂线平行,、如果一个平面与另一个平面的一条垂线平行,那么这两个平面互相垂直那么这两个平面互相垂直 a已知:已知:a/,a 求证:求证:b第27页/共32页例例5、已知、已知PA 平面平面ABCD,ABCD为矩形,为矩形,PA=AD,M、N分别是分别是AB、PC的中点,的中点,求证:求证:(1)MN/平面平面PAD;(2)平面)平面PMC 平面平面PDCPABCDMNQ第28页/共32页练习练习
12、1、已知、已知ABC中,中,O为为AC中点,中点,ABC=900,P为为ABC所在平面外一点,所在平面外一点,PA=PB=PC,求证:,求证:平面平面PAC 平面平面ABCPABCO2、PD 面面ABCD,四边形,四边形ABCD为正方形,在为正方形,在所有的平面中共有多少对互相垂直的平面?所有的平面中共有多少对互相垂直的平面?PDABC第29页/共32页归纳小结:归纳小结:(1)判定面面垂直的两种方法:判定面面垂直的两种方法:定义法定义法 根据面面垂直的判定定理根据面面垂直的判定定理(2)面面垂直的判定定理不仅是面面垂直的判定定理不仅是判定两个平面判定两个平面互相垂直互相垂直的依据,而且是的依据,而且是找出垂直于一个平找出垂直于一个平面的另一个平面面的另一个平面的依据;的依据;(3)从面面垂直的判定定理我们还可以看从面面垂直的判定定理我们还可以看出出面面面垂直面垂直的问题可以转化为的问题可以转化为线面垂直线面垂直的问题来的问题来解决解决.第30页/共32页课后练习:课后练习:A是是BCD所在平面外一点,所在平面外一点,AB=AD,ABC=ADC=90,E是是BD的中点,的中点,求证:平面求证:平面AEC平面平面ABDDACBE第31页/共32页感谢您的观看!第32页/共32页