《青霉素的生产工艺.pptx》由会员分享,可在线阅读,更多相关《青霉素的生产工艺.pptx(73页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第一节 背景知识1.1 青霉素的发现1928年,英国细菌学家Fleming发现污染在培养葡萄球菌的双蝶上的一株霉菌能杀死周围的葡萄球菌。他将此霉菌分离纯化后得到的菌株经鉴定为点青霉,并将这菌所产生的抗生物质命名为青霉素。第1页/共73页1940年,英国Florey和Chain进一步研究此菌,并从培养液中制出了干燥的青霉素制品。经实验和临床试验证明,它毒性很小,并对一些革兰氏阳性菌所引起的许多疾病有卓越的疗效。第2页/共73页1.2青霉素分类及分子结构青霉素是6氨基青霉烷酸(6-APA)苯乙酰衍生物。侧链基团不同,形成不同的青霉素,主要是青霉素G。工业上应用的有钠、钾、普鲁卡因、二苄基乙二胺盐。
2、青霉素发酵液中含有5种以上天然青霉素(如青霉素F、G、X、K、F和V等),它们的差别仅在于侧链R基团的结构不同,其中青霉素G在医疗中用得最多,它的钠或钾盐为治疗革兰氏阳性菌的首选药物,对革兰氏阴性菌也有强大的抑制作用。第3页/共73页青霉素的结构通式第4页/共73页1.3青霉素的单位目前国际上青霉素活性单位表示方法有两种:一是指定单位(unit);二是活性质量(g),最早为青霉素规定的指定单位是:50mL肉汤培养基中恰能抑制标准金葡萄菌生长的青霉素量为一个青霉素单位。在以后,证明了一个青霉素单位相当于0.6g青霉素钠。因此青霉素的质量单位为:0.6g青霉素钠等于1个青霉素单位。由此,1mg青霉
3、素钠等于1670个青霉素单位(unit)。第5页/共73页1.4作用机理已有的研究认为,青霉素的抗菌作用与抑制细胞壁的合成有关。细菌的细胞壁是一层坚韧的厚膜,用以抵抗外界的压力,维持细胞的形状。细胞壁的里面是细胞膜,膜内裹着细胞质。第6页/共73页1.4作用机理细菌的细胞壁主要由多糖组成,也含有蛋白质和脂质。革兰氏阳性菌细胞壁的组成是肽聚糖占细胞壁干重的5080(革兰氏阴性菌为110)、磷壁酸质、脂蛋白、多糖和蛋白质。其中肽聚糖是一种含有乙酰基葡萄糖胺和短肽单元的网状生物大分子,在它的生物合成中需要一种关键的酶即转肽酶。青霉素作用的部位就是这个转肽酶。第7页/共73页1.4作用机理现已证明青霉
4、素内酞胺环上的高反应性肽键受到转肽酶活性部位上丝氨酸残基的羟基的亲核进攻形成了共价键,生成青霉噻唑酰基-酶复合物,从而不可逆的抑制了该酶的催化活性。通过抑制转肽酶,青霉素使细胞壁的合成受到抑制,细菌的抗渗透压能力降低,引起菌体变形,破裂而死亡。第8页/共73页1.5青霉素的应用临床应用:40多年来,主要控制敏感金黄色葡糖球菌、链球菌、肺炎双球菌、淋球菌、脑膜炎双球菌、螺旋体等引起感染,对大多数革兰氏阳性菌(如金黄色葡萄球菌)和某些革兰氏阴性细菌及螺旋体有抗菌作用。优点:毒性小,但由于难以分离除去青霉噻唑酸蛋白(微量可能引起过敏反应),需要皮试。第9页/共73页第10页/共73页2.1 菌种介绍
5、青霉是产生青霉素的重要菌种。广泛分布于空气、土壤和各种物上,常生长在腐烂的柑桔皮上呈青绿色。目前已发现几百种,其中产黄青霉(Penicillum chrysogenum)、点青霉(Penicillum nototum)等都能大量产生青霉素。第11页/共73页第12页/共73页2.2 菌种的保藏菌种的保藏方法有:斜面菌种低温保藏法、砂土管保藏法、甘油封藏法、真空冷冻干燥法。第13页/共73页2.3 孢子的制备这是发酵工序的开端,是一个重要环节。抗生素产量和成品质量同菌种性能以及同孢子和种子的情况有密切关系。生产用的孢子需经过纯种和生产能力的检验,符合规定的才能用来制备种子。第14页/共73页2.
6、3 孢子的制备保藏在砂土管或冷冻干燥管中的菌种经无菌操作接入适合于孢子发芽或菌丝生长的斜面培养基中,经培养成熟后挑选菌落正常的孢子可再一次接入试管斜面。对于产孢子能力强的及孢子发芽、生长繁殖快的菌种可以采用固体培养基孢子,孢子可直接作为中子罐的种子。第15页/共73页第16页/共73页2.4 种子制备种子制备是指孢子接入种子罐后,在罐中繁殖成大量菌丝的过程,其目的是使孢子发芽、繁殖和获得足够数量的菌丝,以便接种到发酵罐当中去。种子制备所使用的培养基及其它工艺条件,都要有利于孢子发芽和菌丝繁殖。第17页/共73页2.4 种子制备种子罐级数是在指制备种子需逐级扩大培养的次数,一般根据种子的生长特性
7、、孢子发芽及菌体繁殖速度,以及发酵罐的容积而定。青霉素种子制备一般为二级种子罐扩大培养。第18页/共73页第19页/共73页2.5 发酵培养基培养基是供微生物生长繁殖和合成各种代谢产物所需要的按一定比例配制的多种营养物质的混合物。培养基的组成和比例是否恰当,直接影响微生物的生长、生产和工艺选择、产品质量和产量等。青霉素的发酵培养基由碳源、氮源、无机盐及金属离子、添加前体、消沫剂五部分组成。第20页/共73页碳源青霉素发酵中常用乳酸或葡萄糖,也可采用葡萄糖母液、糖蜜等。其中乳糖最为便宜,但因货源较少,很多国家采用葡萄糖代替。但当葡萄糖浓度超过一定限度时,会过分加速菌体的呼吸,以至培养基中的溶解氧
8、不能满足需要,使一些中间代谢物不能完全氧化而积累在菌体或培养基中,导致pH下降,影响某些酶的活性,从而抑制微生物的生长和产物的合成。第21页/共73页第22页/共73页氮源氮源供应菌体合成氨基酸和三肽的原料,以进一步合成青霉素。主要有机氮源为玉米浆、棉籽饼粉、花生饼粉、酵母粉、蛋白胨等。玉米浆为较理想的氮源,含固体量少,有利于通气及氧的传递,因而利用率较高。固体有机氮源原料一般需粉碎至200目以下的细度。有机氮源还可以提供一部分有机磷,供菌体生长。无机氮如硝酸盐、尿素、硫酸铵等可适量使用。第23页/共73页无机盐及金属离子碳酸钙用来中和发酵过程中产生的杂酸,并控制发酵液的pH值,为菌体提供营养
9、的无机磷源一般采用磷酸二氢钾。另外加入硫代硫酸钠或硫酸钠以提供青霉素分子中所需的硫。第24页/共73页无机盐及金属离子由于现在还有一些工厂采用铁罐发酵,在发酵过程中铁离子便逐渐进入发酵液。发酵时间愈长,则铁离子愈多。铁离子在50g/ml以上便会影响青霉素的合成。采用铁络合剂以抑制铁离子的影响,但实际对青霉素产量并无改进。所以青霉素的发酵罐采用不锈钢制造为宜,其他重金属离子如铜、汞、锌等能催化青霉素的分解反应。第25页/共73页前体添加苯乙酸或者苯乙酰胺,可以借酰基转移的作用,将苯乙酸转入青霉素分子,提高青霉素G的生产强度,添加苯氧乙酸则产生青霉素V。因此前体的加入成为青霉素发酵的关键问题之一。
10、第26页/共73页前体但苯乙酸对发酵有影响,一般以苯乙酰胺较好。也有人采用苯乙酸月桂醇酯,其优点是在发酵中月桂醇酯水解,苯乙酸结合进青霉素成品。而月桂酸作为细菌营养剂及发酵液消沫剂,且其毒性比苯乙酸小,但价格较贵。前体要在发酵开始20h后加入,并在整个发酵过程中控制在50g/ml左右。第27页/共73页消沫剂由于在发酵过程中二氧化碳的不断产生,加上培养基中有很多有机氮源含有蛋白质,因此在发酵罐内会产生大量泡沫,如不严加控制,就会产生发酵液逃液,导致染菌的后果。采用植物油消沫仍旧是个好方法,一方面作为消沫剂,另一方面还可以起到碳源作用,但现在已普遍采用合成消沫剂(如聚酯、聚醇类消沫剂)代替豆油。
11、第28页/共73页2.6 灭菌工业上常用的方法有:干热灭菌、湿热灭菌、化学药剂灭菌、射线灭菌和介质过滤除菌等几种。在青霉素的生产中,对培养基和发酵罐主要采用的是湿热蒸汽灭菌和空气过滤除菌的方法。第29页/共73页第30页/共73页2.7 发酵这一过程的目的主要是为了使微生物分泌大量的抗生素。发酵开始前,有关设备和培养基必须先经过灭菌,后接入种子。接种量一般为520%。发酵周期一般为45天,但也有少于24小时,或长达二周以上的。在整个过程中,需要不断通气和搅拌,维持一定的罐温和罐压,并隔一段时间取样进行生化分析和无菌试验,观察代谢变化、抗生素产生情况和有无杂菌污染。第31页/共73页第32页/共
12、73页第33页/共73页发酵的过程控制1、碳源控制:青霉菌能利用多种碳源,如乳糖、蔗糖、葡萄糖、阿拉伯糖、甘露糖、淀粉和天然油脂等。乳糖是青霉素生物合成的最好碳源,葡萄糖也是比较好的碳源,但必须控制其加入的浓度,因为葡萄糖易被菌体氧化并产生抑制抗生素合成酶形成的物质,从而影响青霉素的合成,所以可以采用连续添加葡萄糖的方法代替乳糖。第34页/共73页苯乙酸或其衍生物苯乙酰胺、苯乙胺、苯乙酰甘氨酸等均可作为青霉素G的侧链前体。第35页/共73页在碱性条件下,苯乙酸被菌体氧化的速率随培养基pH上升而增加。年幼的菌丝不氧化前体,而仅利用它来构成青霉素分子。随着菌龄的增大,氧化能力逐渐增加。培养基成分对
13、前体的氧化程度有较大影响,合成培养基比复合培养基对前体的氧化量少。第36页/共73页为了尽量减少苯乙酸的氧化,生产上多用间歇或连续添加低浓度苯乙酸的方法,以保持前体的供应速率略大于生物合成的需要。前体用量大于0.1%时,青霉素的生物合成均下降。所以一般发酵液中前体浓度以始终维持在0.1%为宜。第37页/共73页2、pH控制在青霉素发酵过程中,pH是通过下列手段控制的:如pH过高,则添加糖、硫酸或无机氮源;若pH过低,则加入碳酸钙、氢氧化钠、氨或尿素,也可提高通气量。另外,也可利用自动加入酸或碱的方法,使发酵液pH维持在6.87.2,以提高青霉素产量。第38页/共73页3、温度控制青霉菌生长的适
14、宜温度为30,而分泌青霉素的适宜温度是20左右,因此生产上采用变温控制的方法,使之适合不同阶段的需要。一般一级种子的培养温度控制在271左右;二级种子的培养温度控制在251左右;发酵前期和中期的温度控制在26左右;发酵后期的温度控制在24左右。第39页/共73页4、补料控制发酵过程中除以中间补糖控制糖浓度及pH外,补加氮源也可提高发酵单位。为了延长发酵周期,提高青霉素产量,发酵过程分次补加氮源也是有效的措施。第40页/共73页5、铁离子的影响三价铁离子对青霉素生物合成有显著影响,一般若发酵液中铁离子含量超过3040g/ml,则发酵单位增长缓慢。铁离子对产黄青霉绿色孢子合成青霉素的影响见下表。因
15、此铁罐在使用前必须进行处理,可在罐壁涂上环氧树脂等保护层,使铁离子含量控制在30g/ml以下。第41页/共73页防止染菌的要点染菌是抗生素发酵的大敌,不制服染菌就不能实现优质高产。影响染菌的因素很多,而且带随机性质,但只要认真对待,过细地工作,染菌是可以防止的。第42页/共73页空气系统的要求 防止空气带菌主要是提高空压机进口空气的洁净度,防止空气夹带油和水及空气过滤器失效。提高空压机进口空气的洁净度,可以从提高吸气口的位置及加强空气的压缩前过滤着手。防止空气夹带油、水,除加强去除油、水的措施外,还必须防止空气冷却器漏水,注意勿使冷却水压力大于空气压力,防止冷却水进入空气系统。第43页/共73
16、页蒸汽系统的要求重视饱和蒸汽的质量,要严防蒸汽中夹带大量冷凝水,防止蒸汽压力大幅度波动,保证生产时所用的蒸汽压力在3035千帕以上。第44页/共73页1、连续灭菌设备:连消塔结构要求简单,易于拆装和清理,操作时蒸汽能与物料混合均匀,并易于控制温度。2、发酵罐:发酵罐及其附属设备应注意严密和防止泄漏,避免形成“死角”。凡与物料、空气、下水道连接的阀门都必须保证严密度。3、无菌室:用超净工作台及净化室代替无菌室,以提高无菌程度。第45页/共73页第三节 提炼工艺过程第46页/共73页3.1发酵液预处理发酵液中的杂质如高价无机离子和蛋白质在离子交换的过程中对提炼影响甚大,不利于树脂对抗生素的吸收。如
17、用溶媒萃取法提炼时,蛋白质的存在会产生乳化,使溶媒合水相分离困难。第47页/共73页第48页/共73页对高价离子的去除,可采用草酸或磷酸。如加草酸则它与钙离子生成的草酸钙还能促使蛋白质凝固以提高发酵滤液的质量。如加磷酸(或磷酸盐),既能降低钙离子浓度,也利于去除镁离子。第49页/共73页加黄血盐及硫酸锌,则前者有利于去除铁离子,后者有利于凝固蛋白质。此外,两者还有协同作用。他们所产生的复盐对蛋白质有吸附作用。第50页/共73页为了有效的去除发酵液中的蛋白质,需加入絮凝剂。絮凝剂是一种能溶于水的高分子化合物。含有很多离子化基团。第51页/共73页3.2提取化学提取和精制的目的:从发酵液中制取高纯
18、度的、合乎药典的抗生素成品。由于发酵液中青霉素浓度很低,仅0.14.5%左右,而杂质浓度比青霉素的高几十倍甚至几千倍,并且某些杂质的性质与抗生素的非常相近,因此提取精制是一件十分重要的工作。发酵液中常见的杂质有:菌丝、未用完的培养基、易污染杂菌、产生菌的代谢产物、预处理需要加入的杂质等。第52页/共73页第53页/共73页第54页/共73页在提炼过程中要遵循下面四个原则:1、时间短2、温度低3、pH适中4、勤清洗消毒第55页/共73页常用的提取方法有溶媒萃取法、离子交换法和沉淀法等。第56页/共73页青霉素的提取采用溶媒萃取法。青霉素游离酸易溶于有机溶剂,而青霉素盐易溶于水。利用这一性质,在酸
19、性条件下青霉素转入有机溶媒中,调节pH,再转入中性水相,反复几次萃取,即可提纯浓缩。选择对青霉素分配系数高的有机溶剂。工业上通常用醋酸丁酯和戊酯。萃取23次。从发酵液萃取到乙酸丁酯时,pH选择2.8-3.0,从乙酸丁酯反萃到水相时,pH选择6.8-7.2。为了避免pH波动,采用硫酸盐、碳酸盐缓冲液进行反萃。所得滤液多采用二次萃取,用10%硫酸调pH2.83.0,加入醋酸丁酯。在一次丁酯萃取时,由于滤液含有大量蛋白,通常加入破乳剂防止乳化。第一次萃取,存在蛋白质,加0.05-0.1%乳化剂PPB。第57页/共73页3.3精制这是青霉素生产的最后工序。对产品进行精制、烘干和包装的阶段要符合“药品生
20、产管理规范”的规定。第58页/共73页第59页/共73页脱色和去热原质脱色和去热原质是精制注射用青霉素中不可缺少的一步。色素是在发酵过程中所产生的代谢产物,它与菌种和发酵条件有关。热原质是在生产过程中由于被污染后杂菌所产生的一种内毒素。生产中一般用活性炭脱色去热原质,但需注意脱色时pH、温度、活性炭用量及脱色时间等因素,还应考虑它对抗生素的吸附问题,否则影响收率。第60页/共73页第61页/共73页结晶抗生素精制常用结晶法来制得高纯度成品。常用的几种结晶方法有:1、改变温度结晶 利用抗生素在溶剂中的溶解度随温度变化而显著变化的这一特性来进行结晶。2、利用等电点结晶 当将某一抗生素溶液的pH调到
21、等电点时,它在水溶液中溶解度最小,则沉淀析出。3、加成盐剂结晶 在抗生素溶液中加成盐剂使抗生素以盐的形式从溶液中能够沉淀结晶。第62页/共73页青霉素钠盐在醋酸丁酯中溶解度很小,利用此性质,再二次醋酸丁酯萃取液中加入醋酸钠乙醇溶液,并控制温度青霉素钠盐就结晶析出。反应如下:第63页/共73页醋酸丁酯中含水量过高会影响收率,但可提高晶体纯度。水分在0.9%以下对收率影响较小。得到的晶体要求颗粒均匀,有一定的细度。颗粒太细会使过滤、洗涤困难。晶体经丁醇洗涤,真空干燥即可等到成品。第64页/共73页第65页/共73页3.4成品鉴定成品鉴定是根据药典的要求逐项进行分析,包括效价鉴定、毒性试验、无菌检查
22、、热源质试验、水分测定、水溶液酸碱度及混浊度测定、结晶颗粒的色泽及大小的测定等。对于药典上未有规定的新抗生素,则可参照相近抗生素,按经验规定一些指标。第66页/共73页3.4成品鉴定酸碱度检测:取本品,加水制成每1ml 中含30mg的溶液,测定。pH值应为5.0 7.5。溶液的澄清度与颜色:取样品0.3g,加水5ml使溶解,溶液应澄清无色;如显浑浊,与浊度标准液比较,均不得更浓;如显色,与黄色或黄绿色标准比色液比较,均不得更深。第67页/共73页3.4成品鉴定吸光度:取样品,加水制成每1ml 中含1.80mg的溶液,在280nm 的波长处测定吸光度,不得大于0.10;在264nm的波长处有最大
23、吸收,吸光度应为0.800.88。细菌内毒素:取样品测定,每100青霉素单位中含内毒素的量应小于0.01EU。第68页/共73页3.4成品鉴定无菌:取样品,用青霉素酶法灭活后或用适宜溶剂溶解后,转移至不少于500ml的0.9%无菌氯化钠溶液中,用薄膜过滤法处理后测定。第69页/共73页3.4成品鉴定效价测定:取本品适量,精密称定,加水溶液并定量稀释制成每1ml中约含0.5mg的溶液,摇匀,精密量取10l,注入液相色谱仪,记录色谱图;另取青霉素对照品适量,同法测定。按外标以峰面积计算,其结果乘以1.0658,即为本品效价。每1mg相当于1670青霉素单位。第70页/共73页3.5成品分装抗生素产品一般分装为大包装的原料药,以供制剂厂进行小包装或制剂加工。也有一些抗生素工厂在无菌条件下用自动分装机进行小瓶分装。第71页/共73页第72页/共73页感谢您的观看!第73页/共73页