采样控制系统分析与设计.pptx

上传人:莉*** 文档编号:73625125 上传时间:2023-02-20 格式:PPTX 页数:95 大小:908.90KB
返回 下载 相关 举报
采样控制系统分析与设计.pptx_第1页
第1页 / 共95页
采样控制系统分析与设计.pptx_第2页
第2页 / 共95页
点击查看更多>>
资源描述

《采样控制系统分析与设计.pptx》由会员分享,可在线阅读,更多相关《采样控制系统分析与设计.pptx(95页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、典型的采样系统 计算机直接数字控制系统 第第2页页/共共95页页第1页/共95页上面控制系统框图实际控制系统中是不存在采样开关的。第第3页页/共共95页页第2页/共95页计算机控制系统的优点:1、有利于实现系统的高精度控制;2、数字信号传输有利于抗干扰;3、可以完成复杂的控制算法,而且参数修 改容易;4、除了采用计算机进行控制外,还可以进行显示,报警等其它功能;5、易于实现远程或网络控制。第第4页页/共共95页页第3页/共95页采样控制系统也是一类动态系统;该系统的性能也和连续系统一样可以分为动态和稳态两部分;这类系统的分析也可以借鉴连续系统中的一些方法,但要注意其本身的特殊性;采样系统的分析

2、可以采用Z变换方法,也可以采用状态空间分析方法。第第5页页/共共95页页第4页/共95页8-2 8-2 信号的采样与复现信号的采样与复现1 1、采样:、采样:把连续信号变成脉冲或数字序列的把连续信号变成脉冲或数字序列的过程叫做采样;过程叫做采样;2 2、采样器:、采样器:实现采样的装置,又名采样开关;实现采样的装置,又名采样开关;3 3、复现:、复现:将采样后的采样信号恢复为原来的将采样后的采样信号恢复为原来的连续信号的过程;连续信号的过程;4 4、采样方式:、采样方式:(1 1)等周期采样:)等周期采样:(2 2)多阶采样:采样是周期性重复的)多阶采样:采样是周期性重复的 (3 3)多多速速

3、采采样样:有有两两个个以以上上不不同同采采样样周周期的采样开关对信号同时进行采样期的采样开关对信号同时进行采样 (4 4)随随机机采采样样:采采样样是是随随机机进进行行的的,没没有有固定的规律固定的规律第第6页页/共共95页页第5页/共95页一个连续信号经采样开关变成了采样信号采样脉冲的持续时间远小于采样周期T和系统的时间常数可以将窄脉冲看成是理想脉冲,从而可得采样后 的采样信号为1 1、信号的采样过程、信号的采样过程第第7页页/共共95页页第6页/共95页 是理想脉冲出现的是理想脉冲出现的时刻时刻因此采样信号只在脉冲因此采样信号只在脉冲出现的瞬间才有数值,出现的瞬间才有数值,于是采样信号变为

4、于是采样信号变为 因此采样过程可以看作一个调制过程。因此采样过程可以看作一个调制过程。第第8页页/共共95页页第7页/共95页采样信号的调制过程 第第9页页/共共95页页第8页/共95页考虑到考虑到 时,时,因此,可以将原来采样信号表达式变为如下因此,可以将原来采样信号表达式变为如下形式:形式:将窄脉冲看作理想脉冲的条件是采样持续时间远远将窄脉冲看作理想脉冲的条件是采样持续时间远远小于采样周期和被控对象的时间常数小于采样周期和被控对象的时间常数第第10页页/共共95页页第9页/共95页2 2、采样定理、采样定理由前面的分析可知,采样窄脉冲为周期性的,由前面的分析可知,采样窄脉冲为周期性的,采样

5、后的信号采样后的信号 取该信号的拉氏变换取该信号的拉氏变换,并令并令 :说明采样后信号频谱是以说明采样后信号频谱是以 s s为周期的。为周期的。采样时间满足什么条件?采样时间满足什么条件?才能复现原信号!才能复现原信号!第第11页页/共共95页页第10页/共95页连续信号在时域上是连续的,但频域中的频谱是孤立的;连续信号采样之后,具有以采样角频率 为周期的无限多个频谱。采样信号的频谱采样信号的频谱第第12页页/共共95页页第11页/共95页采样定理:采样定理:为使采样后的脉冲序列频谱互不为使采样后的脉冲序列频谱互不搭接,采样频率必须大于或等于原连续信号搭接,采样频率必须大于或等于原连续信号所含

6、的最高频率的两倍,这样方可通过适当所含的最高频率的两倍,这样方可通过适当的理想滤波器把原信号毫无畸变的复现出来。的理想滤波器把原信号毫无畸变的复现出来。香农定理的物理意义是:香农定理的物理意义是:满足香农定理的采满足香农定理的采样信号中含有连续信号的信息,该信息可以样信号中含有连续信号的信息,该信息可以通过具有低通滤波特性的滤波器复现出来。通过具有低通滤波特性的滤波器复现出来。第第13页页/共共95页页第12页/共95页3 3、零阶保持器、零阶保持器保持器是采样系统的一个基本单元,功能是保持器是采样系统的一个基本单元,功能是将采样信号恢复成连续信号。将采样信号恢复成连续信号。理想滤波器可以将采

7、样信号恢复成连续信号;理想滤波器可以将采样信号恢复成连续信号;理想滤波器是物理上不可实现的,因此要寻理想滤波器是物理上不可实现的,因此要寻找一种物理上可实现,特性上又接近于理想找一种物理上可实现,特性上又接近于理想滤波器的设备滤波器的设备保持器。保持器。采样信号只在采样点上有定义采样信号只在采样点上有定义,e*(KT),e*(KT)和和e*(K+1)T)e*(K+1)T)都是有定义的都是有定义的,但是在这两者之但是在这两者之间的时间段上连续信号应该是什么样子呢间的时间段上连续信号应该是什么样子呢?这就是保持器要解决的问题这就是保持器要解决的问题.第第14页页/共共95页页第13页/共95页保持

8、器是一种时域外推装置,即将过去时刻或现在保持器是一种时域外推装置,即将过去时刻或现在时刻的采样值进行外推。时刻的采样值进行外推。通常把按照常数、线性函数和抛物线函数外推的保通常把按照常数、线性函数和抛物线函数外推的保持器称为零阶、一阶和二阶保持器。持器称为零阶、一阶和二阶保持器。如果取如果取则当前时刻的采样值将被保持到下一个采样时刻则当前时刻的采样值将被保持到下一个采样时刻.这种保持器称为零阶保持器这种保持器称为零阶保持器.如何用数学语言描述如何用数学语言描述这种特性呢这种特性呢?第第15页页/共共95页页第14页/共95页零阶保持器零阶保持器:把采样时刻把采样时刻KTKT的采样值不增不减地保

9、持到下一个采样时刻(的采样值不增不减地保持到下一个采样时刻(K K1 1)T T。零阶保持器的输入和输出信号 第第16页页/共共95页页第15页/共95页 由于在采样时刻由于在采样时刻 故保持器的输出 拉氏变换为 零阶保持器的传递函数为 第第17页页/共共95页页第16页/共95页零阶保持器的传递函数为 零阶保持器的频率特性为 第第18页页/共共95页页第17页/共95页零阶保持器的频率特性如图所示零阶保持器的频率特性如图所示零阶除了允许主频谱分量通过之外,还允许一部分附加高频分量通过。因此零阶除了允许主频谱分量通过之外,还允许一部分附加高频分量通过。因此复现出的信号与原信号是有差别的。复现出

10、的信号与原信号是有差别的。第第19页页/共共95页页第18页/共95页4 4、小结、小结采样控制系统的结构;采样控制系统的结构;计算机控制的采样系统的优点;计算机控制的采样系统的优点;采样过程和采样定理;采样过程和采样定理;零阶保持器的传函和特性。零阶保持器的传函和特性。第第20页页/共共95页页第19页/共95页8-3 Z8-3 Z变换与反变换变换与反变换线线性性连连续续控控制制系系统统可可用用线线性性微微分分方方程程来来描描述述,用用拉拉普普拉拉斯斯变变换换分分析析它它的的暂暂态态性能及稳态性能。性能及稳态性能。对对于于线线性性采采样样控控制制系系统统则则可可用用线线性性差差分分方方程程来

11、来描描述述,用用Z Z变变换换来来分分析析它它的的暂暂态性能及稳态性能。态性能及稳态性能。Z Z变变换换是是研研究究采采样样系系统统主主要要的的数数学学工工具具,由由拉拉普普拉拉斯斯变变换换引引导导出出来来,是是采采样样信号的拉普拉斯变换。信号的拉普拉斯变换。第第21页页/共共95页页第20页/共95页连续信号连续信号f f(t t)的拉普拉斯变换为)的拉普拉斯变换为连续信号连续信号f f(t t)经过采样得到采样信号)经过采样得到采样信号f f*(t t)为)为其拉普拉斯变换为其拉普拉斯变换为定义新的变量定义新的变量 采样信号的Z变换有有第第22页页/共共95页页第21页/共95页1 1、常

12、用的、常用的Z Z变换方法变换方法级数求和法:级数求和法:将采样信号将采样信号f f*(t t)展开如下)展开如下对上式逐项进行拉普拉斯变换,得对上式逐项进行拉普拉斯变换,得在一定条件下,常用函数的在一定条件下,常用函数的Z Z变换都能够写成闭合形式。变换都能够写成闭合形式。第第23页页/共共95页页第22页/共95页【例例1 1】求单位阶跃函数求单位阶跃函数1 1(t t)的)的Z Z变换。变换。解:解:单位阶跃函数的采样脉冲序列为单位阶跃函数的采样脉冲序列为 代入代入E(z)E(z)的级数表达式,得的级数表达式,得对上列级数求和,写成闭合形式,得对上列级数求和,写成闭合形式,得 第第24页

13、页/共共95页页第23页/共95页部分分式法部分分式法 当连续信号是以拉普拉斯变换式当连续信号是以拉普拉斯变换式F F(S S)的形式给出)的形式给出,且且F F(S S)为有理函数时)为有理函数时,可以展开成部分分式的形式,即可以展开成部分分式的形式,即 可得与其对应的可得与其对应的z z变换为变换为 由此可得由此可得F F(S S)的)的z z变换为变换为 对应的时域表达式对应的时域表达式第第25页页/共共95页页第24页/共95页【例例2 2】已知已知,试求其Z变换.解解 将将G G(s s)展开成部分分式)展开成部分分式 其对应的时域表示式为其对应的时域表示式为 两个时域信号的叠加两个

14、时域信号的叠加 第第26页页/共共95页页第25页/共95页留数法留数法设设连连续续信信号号f(t)f(t)的的拉拉普普拉拉斯斯变变换换式式F F(S S)及及其其全全部部极极点点p pi i为为已知,可利用留数法求其已知,可利用留数法求其Z Z变换变换F(z)F(z),即,即 当当s=ps=pi i为一阶极点时,其留数为为一阶极点时,其留数为 当当s=ps=pj j为为q q阶极点时,其留数为阶极点时,其留数为 s=p s=pi i处的留数处的留数 式中为第第27页页/共共95页页第26页/共95页【例】求f(t)=t的z变换 t0 在在s=0s=0处有二阶极点,处有二阶极点,f(t)f(t

15、)的的z z变换变换F(z)F(z)为为 解:由于第第28页页/共共95页页第27页/共95页2 2、Z Z变换基本定理变换基本定理1.1.线性定理线性定理若若 i i为常数,则为常数,则 线性定理表明线性定理表明,时域函数线性组合的时域函数线性组合的z z变换等变换等于各时域函数于各时域函数z z变换的线性组合。变换的线性组合。设有连续时间函数设有连续时间函数 第第29页页/共共95页页第28页/共95页2.滞后定理 设e(t)的z变换为E(z),且t0时,e(t)=0,则滞后定理说明,原函数在时域中延迟滞后定理说明,原函数在时域中延迟k k个采样周期求个采样周期求z z变换变换,相当于它的

16、相当于它的z z变换乘以变换乘以z z-k-k。因此。因此 z z-k-k可以表示可以表示时域中的滞后环节时域中的滞后环节,它把采样信号延迟它把采样信号延迟k k个采样周期个采样周期第第30页页/共共95页页第29页/共95页3.超前定理4.4.初值定理初值定理 设函数e(t)的z变换为E(z),则 设e(t)的z变换为 E(z),而且存在,则 第第31页页/共共95页页第30页/共95页5.5.终值定理终值定理 6.6.复数位移定理复数位移定理 设函数e(t)的z变换为E(z),且在z平面上的以原点为圆心的单位圆上和圆外均没有极点,则设函数设函数e(t)e(t)的的z z变换为变换为E(z)

17、E(z),则,则第第32页页/共共95页页第31页/共95页3 3、Z Z反变换反变换 由E(z)求e*(t)过程称为z反变换,表示为 由由于于z z变变换换只只表表征征连连续续函函数数在在采采样样时时刻刻的的特特性性,并并不不反反映映采采样样时时刻刻之之间间的的特特性性,因因此此z z反反变变换换只只能能求求出采样函数出采样函数e e*(t),(t),不能求出其连续函数不能求出其连续函数e(t)e(t)。即有。即有 第第33页页/共共95页页第32页/共95页常用的常用的Z Z反变换方法反变换方法1 1、长除法、长除法 将将E E(z)(z)的的分分子子、分分母母多多项项式式按按z z的的降

18、降幂幂形形式式排排列列,用用分分子子多多项项式式除除以以分分母母多多项项式式,可可得得到到E(z)E(z)关关于于z z-1-1的的无穷级数形式无穷级数形式,在根据延迟定理得到在根据延迟定理得到e e*(t)(t)。对上式求对上式求z z反变换反变换,得得 第第34页页/共共95页页第33页/共95页2 2、部分分式法、部分分式法 将E(z)/z展开成部分分式。由于在E(z)式中,分子表达式中通常含有z。得到部分分式后,再将z乘到各部分分式的分子部分,再查表进行反变换即可,所以也称为查表法。第第35页页/共共95页页第34页/共95页【例例3 3】求求的z反变换。解解 将将E E(z)(z)/

19、z/z展开成部分分式为展开成部分分式为 则对应的时间函数则对应的时间函数e e*(t)(t)为为 则有第第36页页/共共95页页第35页/共95页3.3.留数法留数法由z变换的定义有 用用z zm-1m-1乘上式两端乘上式两端,得得 根据复变函数理论根据复变函数理论,知知 第第37页页/共共95页页第36页/共95页当当z=pz=pi i为单极点时,其留数为为单极点时,其留数为 当当z=pz=pj j为为n n重极点时,其留数为重极点时,其留数为 第第38页页/共共95页页第37页/共95页4 4 差分方程差分方程描述描述n n阶线性连续系统的数学模型为微分方程,而描述线性采样系统的教学阶线性

20、连续系统的数学模型为微分方程,而描述线性采样系统的教学模型为差分方程。模型为差分方程。差分的定义:差分的定义:一阶前向差分定义为一阶前向差分定义为二阶前向差分定义为二阶前向差分定义为第第39页页/共共95页页第38页/共95页一阶后向差分定义为:一阶后向差分定义为:二阶后向差分定义为:二阶后向差分定义为:前向和后向差分示意图第第40页页/共共95页页第39页/共95页【例】一阶采样系统的差分方程为 解解:对方程两边进行在对方程两边进行在z z变换,并由实移定理变换,并由实移定理 其中b为常数,因为 所以 第第41页页/共共95页页第40页/共95页8-4 8-4 脉冲传递函数脉冲传递函数一、脉

21、冲传递函数的基本概念一、脉冲传递函数的基本概念 线性采样系统初始条件为零时线性采样系统初始条件为零时,系统输出信号的系统输出信号的z z变换与输入信号的变换与输入信号的z z变换之比变换之比,称为线性采样系统的称为线性采样系统的脉冲传递函数脉冲传递函数,或简称为或简称为z z传递函数。传递函数。实实际际采采样样系系统统的的输输出出信信号号通通常常是是连连续续信信号号,为为了了应应用用脉脉冲冲传传递递函函数数概概念念,可可在在系系统统的的输输出出端端虚虚设设一一个个同同步步采采样样开开关关,使使输输出出成成为为采样信号。采样信号。第第42页页/共共95页页第41页/共95页实际采样系统第第43页

22、页/共共95页页第42页/共95页设输入脉冲序列为设输入脉冲序列为由叠加原理可求出系统对脉冲序列的响应为 根据根据z z变换的卷积定理,上式的变换的卷积定理,上式的z z变换为变换为 式中:式中:G(z)G(z)、R(z)R(z)、Y(z)Y(z)分别为分别为g(t)g(t)、r(t)r(t)、y(t)y(t)的的z z变换。变换。第第44页页/共共95页页第43页/共95页即采样系统脉冲传递函数即采样系统脉冲传递函数为为采样脉冲传函为连续系统的脉冲响应的采样脉冲传函为连续系统的脉冲响应的Z Z变换变换脉冲传递函数和连续系统的传递函数一样表征了采样系统的固有特性;它除了与系统的结构、参数有关系

23、,还与采样开关在系统中的具体位置有关。第第45页页/共共95页页第44页/共95页1 1、两个环节有采样开关时、两个环节有采样开关时根据脉冲传递函数的定义:根据脉冲传递函数的定义:当环节之间有采样开关时,等效脉冲传递函数为各串联环节脉冲传递函数之积。该结论也可推广到n个环节串联的情况二、串联环节的脉冲传函二、串联环节的脉冲传函第第46页页/共共95页页第45页/共95页2 2、两个环节没有采样开关时、两个环节没有采样开关时当串联环节之间无采样开关时,系统脉冲传递函数为各串联环节传递函数乘积的z变换。该结论可推广到相互间无采样开关的n个环节串联的情况。第第47页页/共共95页页第46页/共95页

24、3 3、有零阶保持器时的开环系统脉冲传递函数、有零阶保持器时的开环系统脉冲传递函数 有零阶保持器时的开环采样系统 第第48页页/共共95页页第47页/共95页三、闭环系统的脉冲传递函数三、闭环系统的脉冲传递函数第第49页页/共共95页页第48页/共95页闭环系统的误差脉冲传递函数 闭环系统脉冲传递函数为系统输出第第50页页/共共95页页第49页/共95页当系统有扰动作用时,可得闭环系统的误差与扰动间的脉冲传递函数为 系统输出与扰动之间的脉冲传递函数 由于系统中有采样器的存在,所以一般情况下 第第51页页/共共95页页第50页/共95页例例 设闭环采样系统结构图如图所示,试证其闭环脉冲传递函数为

25、设闭环采样系统结构图如图所示,试证其闭环脉冲传递函数为 闭环采样系统结构图第第52页页/共共95页页第51页/共95页对于有些采样控制系统,无法写出闭环脉冲传递函数只能写出输出的Z变换第第53页页/共共95页页第52页/共95页8-5 8-5 采样系统的分析采样系统的分析稳定性分析稳定性分析闭环极点分布与瞬态响应的关闭环极点分布与瞬态响应的关系系稳态误差分析稳态误差分析第第54页页/共共95页页第53页/共95页1 1、采样稳定性分析、采样稳定性分析1 1)稳定性的基本概念)稳定性的基本概念稳定性是指在扰动的作用下,系统会偏离原来的平衡位置,在扰动撤除后,稳定性是指在扰动的作用下,系统会偏离原

26、来的平衡位置,在扰动撤除后,系统恢复到原来平衡状态的能力;系统恢复到原来平衡状态的能力;根据稳定性的定义,可以采用脉冲响应的情况来研究系统的稳定性;根据稳定性的定义,可以采用脉冲响应的情况来研究系统的稳定性;系统的脉冲响应如果能够衰减到系统的脉冲响应如果能够衰减到0 0,则系统是稳定的;,则系统是稳定的;否则系统是不稳定的。否则系统是不稳定的。第第55页页/共共95页页第54页/共95页采样系统的脉冲响应:由Z反变换得由上式可若 ,即系统的所有极点位于Z平面的单位圆内,则2 2)稳定条件:)稳定条件:第第56页页/共共95页页第55页/共95页采样系统稳定的充分必要条件是:采样系统稳定的充分必

27、要条件是:系统闭环脉冲传递函数的所有极点位于系统闭环脉冲传递函数的所有极点位于Z Z平面上的单位圆内。或者说,所有极点的模都平面上的单位圆内。或者说,所有极点的模都小于小于1,1,即即 ,单位圆就是稳定,单位圆就是稳定区域的边界。区域的边界。第第57页页/共共95页页第56页/共95页S平面的左半平面 ,z的幅值在0和1之间变化,对应z平面单位圆内;S平面的虚轴 ,对应z平面的单位圆;当 由 变到 时,3 3)s s平面与平面与z z平面的映射关系平面的映射关系第第58页页/共共95页页第57页/共95页线性采样系统不能直接使用劳斯稳定判据,因为采样系统稳定边界是线性采样系统不能直接使用劳斯稳

28、定判据,因为采样系统稳定边界是z z平面上以原点为圆心的单位圆周,而平面上以原点为圆心的单位圆周,而不是虚轴。为能使用劳斯判据,可将不是虚轴。为能使用劳斯判据,可将z z平面上单位圆周映射到新坐标系中的虚轴,这种变换称为平面上单位圆周映射到新坐标系中的虚轴,这种变换称为w w变换变换,或,或称双线性变换。称双线性变换。4 4)线性采样系统劳斯判据)线性采样系统劳斯判据第第59页页/共共95页页第58页/共95页式中,式中,z z、w w均为复变量,可分别写为均为复变量,可分别写为 代入双线性变换公式,得代入双线性变换公式,得w w平面虚轴上的点对应于平面虚轴上的点对应于上式中实部为零的点,即上

29、式中实部为零的点,即 则则设设第第60页页/共共95页页第59页/共95页z z平平面面上上单单位位圆圆内内(x(x2 2+y+y2 21)1)对对应应着着w w平平面面实实部部为为负负数数的的左左半半平平面面。z z平平面面上上单单位位圆圆外外(x(x2 2+y+y2 21)1)对对应应着着w w平平面面实实部部为为正正数数的的右右半半平平面。面。z z平面与平面与w w平面的映射关系所示。平面的映射关系所示。第第61页页/共共95页页第60页/共95页【例例】设采样控制系统的方框图如图所示。设采样控制系统的方框图如图所示。采样周期采样周期T=1s,T=1s,T=0.5sT=0.5s试求使系

30、统稳定试求使系统稳定的的K K值范围。值范围。解解 系统的开环脉冲传递函数为系统的开环脉冲传递函数为相应的闭环系统特征方程为第第62页页/共共95页页第61页/共95页将将T=1sT=1s代入上式,得代入上式,得 进行进行w w变换可求得变换可求得w w域系统的特征方程为域系统的特征方程为 根据代数判据,闭环系统稳定条件为所以稳定时K的取值为 第第63页页/共共95页页第62页/共95页同理可得同理可得T=1sT=1s时时 稳定时K的取值为 稳定时K的取值为 同理可得同理可得,T=0.5s,T=0.5s时时 开环增益K和采样周期T对采样系统稳定性有如下影响:(1)采样周期T一定时,增加开环增益

31、K会使采样系统稳定性变差,甚至使系统不稳定。(2)开环增益K一定时,采样周期T越长,丢失的信息越多,对采样系统稳定性及动态性能均不利,甚至使系统不稳定。第第64页页/共共95页页第63页/共95页2 2、闭环脉冲传递函数零、极点分布与暂态响应的闭环脉冲传递函数零、极点分布与暂态响应的一般关系一般关系 1)系统的单位阶跃响应 设闭环采样系统的脉冲传递函数为设闭环采样系统的脉冲传递函数为式式中中M(Z)M(Z)、D(Z)D(Z)闭闭环环脉脉冲冲传传递递函函数数分分子子多项式和分母多项式多项式和分母多项式 设i闭环极点 zj闭环零点第第65页页/共共95页页第64页/共95页当输入为单位阶跃信号时系

32、统输出信号的z变换为 将上式展成部分分式可得式中:第第66页页/共共95页页第65页/共95页对上式进行对上式进行z z反变换,得采样系统输出采样信号为反变换,得采样系统输出采样信号为 上式右边第一项为系统的稳态响应分量,第二项上式右边第一项为系统的稳态响应分量,第二项为暂态响应分量。为暂态响应分量。显然,随极点在平面位置的不同,它所对应的暂态分量也不同。第第67页页/共共95页页第66页/共95页实数极点:实数极点:若实数极点分布在单位圆内,其对应若实数极点分布在单位圆内,其对应的分量呈衰减变化。正实数极点对应的单调衰减,的分量呈衰减变化。正实数极点对应的单调衰减,负实数极点对应的振荡衰减;

33、负实数极点对应的振荡衰减;共轭极点:共轭极点:有一对共轭复数极点有一对共轭复数极点 i i与与 i i,即,即 当当|i i|1 1时时,y,yi i(k)(k)为发散振荡函数;当为发散振荡函数;当|i i|1 1时,时,y yi i(k)(k)为衰减振荡函数为衰减振荡函数,振荡角频率为振荡角频率为i为共轭复数系数Ai的幅角。第第68页页/共共95页页第67页/共95页暂态响应与极点位置关系 第第69页页/共共95页页第68页/共95页1)1)当闭环脉冲传递函数的极点位于当闭环脉冲传递函数的极点位于z z平面上以平面上以原点为圆心的单位圆内时原点为圆心的单位圆内时,其对应的暂态分量其对应的暂态

34、分量是衰减的。是衰减的。2)2)要使控制系统具有比较满意的暂态响应要使控制系统具有比较满意的暂态响应,其其闭环极点应尽量避免分布在闭环极点应尽量避免分布在Z Z平面单位圆内的平面单位圆内的左半部左半部,最好分布在单位圆内的右半部。最好分布在单位圆内的右半部。3)3)极点尽量靠近坐标原点极点尽量靠近坐标原点,相应的暂态分量衰相应的暂态分量衰减速度较快。减速度较快。4)4)离单位圆周最近且附近无闭环零点的共轭离单位圆周最近且附近无闭环零点的共轭复数极点为主导极点。复数极点为主导极点。第第70页页/共共95页页第69页/共95页3 3、采样系统的稳态误差、采样系统的稳态误差与连续系统类似地求稳态误差

35、有两种方法:与连续系统类似地求稳态误差有两种方法:1)1)应用应用z z变换变换终值定理终值定理计算稳态误差的终值;计算稳态误差的终值;2)2)应用误差脉冲传递函数计算应用误差脉冲传递函数计算静态误差系数静态误差系数,进而得到稳态误差。进而得到稳态误差。第第71页页/共共95页页第70页/共95页误差脉冲传递函数为误差脉冲传递函数为闭环采样控制系统 第第72页页/共共95页页第71页/共95页由由z z变换终值定理得稳态误差为变换终值定理得稳态误差为 与与连连续续系系统统类类似似,开开环环脉脉冲冲传传递递函函数数的的一一般般形式为形式为=0=0称为称为0 0型系统;型系统;=1=1称为称为I

36、I型系统;型系统;=n=n称为称为n n型系统。型系统。第第73页页/共共95页页第72页/共95页定义为静态位置误差系数定义为静态位置误差系数对于对于0 0型系统型系统 为一常量,稳态误差为为一常量,稳态误差为对于对于型及以上系统型及以上系统1 1)单位阶跃输入:)单位阶跃输入:第第74页页/共共95页页第73页/共95页定义静态速度误差系数定义静态速度误差系数对于对于0 0型系统型系统 ,稳态误差为,稳态误差为对于对于型型 为常值为常值 ,也为常值也为常值对于对于型及以上系统型及以上系统2 2)单位斜坡输入:)单位斜坡输入:第第75页页/共共95页页第74页/共95页定义静态加速度误差系数

37、对于0型和型系统 ,稳态误差为对于型 为常值,也为常值3 3)单位加速度输入:)单位加速度输入:第第76页页/共共95页页第75页/共95页采样系统误差除了与系统的结构、参数和输入采样系统误差除了与系统的结构、参数和输入信号有关外,还与采样周期有关,缩小采样周信号有关外,还与采样周期有关,缩小采样周期可以减小稳态误差。期可以减小稳态误差。系统型别系统型别位置误差位置误差速度误差速度误差加速度误差加速度误差0 0型型1 1型型0 02 2型型0 00 0第第77页页/共共95页页第76页/共95页例 采样系统结构图如图所示,设T=0.2s,输入信号为求系统的稳态误差。解:系统的开环脉冲传递函数为

38、第第78页页/共共95页页第77页/共95页解:系统的开环脉冲传递函数为T=0.2s时系统特征方程为 所以系统稳定 所以采样时刻的稳态误差为 第第79页页/共共95页页第78页/共95页关于采样时刻之间的波纹引起的误差 由于采样,系统中增加了高频分量,造成了采样间隔的纹波如图所示。它们同样影响到采样点的稳态误差,所以在用上述方法求误差时,严格说还应将它们也考虑进去。分析纹波须应用修正z变换法。采样时刻间的纹波 第第80页页/共共95页页第79页/共95页8-6 8-6 最少拍采样系统的校正最少拍采样系统的校正在采样系统中通常将一个采样周期称之为一在采样系统中通常将一个采样周期称之为一拍,若在典

39、型输入信号作用下,经过最少采拍,若在典型输入信号作用下,经过最少采样周期,系统的采样误差信号减小为零实现样周期,系统的采样误差信号减小为零实现完全跟踪,则称之为完全跟踪,则称之为最少拍系统最少拍系统。具有数字控制器的采样控制系统 第第81页页/共共95页页第80页/共95页闭环脉冲传递函数 误差脉冲传递函数为求出数字控制器的脉冲传递函数为 或 第第82页页/共共95页页第81页/共95页最小拍系统的设计是针对典型输入作用进行的最小拍系统的设计是针对典型输入作用进行的.典型输入信号的典型输入信号的z z变换可以表示为如下一般形式变换可以表示为如下一般形式所以有 根据终值定理,采样系统的稳态误差为

40、 第第83页页/共共95页页第82页/共95页根据终值定理,采样系统的稳态误差为 要使系统无稳态误差 可取 可得最小拍系统的闭环脉冲传递函数闭环误差脉冲传递函数第第84页页/共共95页页第83页/共95页(1 1)单位阶跃输入)单位阶跃输入 可见,最小拍系统经过一拍便可以完全跟踪输入信号 这样的采样系统称为一拍系统,调节时间为 最小拍系统阶跃响应序列 第第85页页/共共95页页第84页/共95页(2 2)单位斜坡输入)单位斜坡输入 可见,最小拍系统经过二拍便可以完全跟踪输入信号 这样的采样系统称为二拍系统,调节时间为 最小拍系统斜坡响应序列 第第86页页/共共95页页第85页/共95页(3 3

41、)单位加速度输入)单位加速度输入 第第87页页/共共95页页第86页/共95页可见,最小拍系统经过三拍便可以完全跟踪单位加速度输入信号。这样的采样系统称为三拍系统,调节时间为 最小拍系统单位加速度响应序列 第第88页页/共共95页页第87页/共95页例 采样控制系统如图所示,其中连续部分的传递函数为 已知T=0.5s,试求在单位斜坡输入下,最小拍系统数字控制器的脉冲传递函数.第第89页页/共共95页页第88页/共95页解:由图可知所以最小拍系统数字控制器的脉冲传递函数第第90页页/共共95页页第89页/共95页单位斜坡响应 暂态过程只要两个采样周期即可结束!第第91页页/共共95页页第90页/

42、共95页则系统的输出信号的z变换为 将上述系统的输入信号改为单位阶跃信号 此时动态过程也可在两个采样周期内结束,但在t=T时超调量为100%。第第92页页/共共95页页第91页/共95页单位阶跃响应 第第93页页/共共95页页第92页/共95页 根据一种典型信号进行校正设计的最小拍采样系统,往往不能很好地适应其它形式的输入信号,这使最小拍系统的应用受到很大的局限;其次,上述校正方法只能保证在采样时刻的稳态误差为零,而在采样点之间系统的输出可能会出现纹波,因此把这种系统称为有纹波系统。纹波的存在不仅影响系统的精度,而且会增加系统的机械磨损和功耗,这是我们不希望的。适当的增加暂态时间(拍数),可以

43、实现无纹波输出的采样系统。第第94页页/共共95页页第93页/共95页本章小结本章小结采样系统是系统中一处或几处信号是采样信号的系采样系统是系统中一处或几处信号是采样信号的系统;统;采样系统要用差分方程或脉冲传递函数去研究;采样系统要用差分方程或脉冲传递函数去研究;Z Z变换只能反映采样时刻的信息,因此要是采样信号变换只能反映采样时刻的信息,因此要是采样信号能够真实地反映连续信号信息,采样过程要满足采能够真实地反映连续信号信息,采样过程要满足采样定理;样定理;采样系统稳定的充分必要条件是闭环特征根位于单采样系统稳定的充分必要条件是闭环特征根位于单位圆内;位圆内;可以通过双线性变换和劳斯判据判断采样系统的稳可以通过双线性变换和劳斯判据判断采样系统的稳定性;定性;采样系统的动态性能和稳态性能;采样系统的动态性能和稳态性能;最少拍采样系统的校正最少拍采样系统的校正.第第95页页/共共95页页第94页/共95页感谢您的观看。第95页/共95页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > PPT文档

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁