《万有引力定律优秀教案.pdf》由会员分享,可在线阅读,更多相关《万有引力定律优秀教案.pdf(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、六万有引力和天体运动(一)1.1.开普勒行星定律第一定律轨道定律所有行星围绕太阳运动的轨道都是椭圆,太阳处于所有椭圆的一个焦点上。因此地球公转时有近日点和远日点2.2.第二定律面积定律太阳和行星的连线在相等的时间内扫过的面积相等。因此行星的公转速率是不均匀的,在近日点最快,在远日点最慢。3.3.第三定律周期定律所有行星椭圆轨道的半长轴R的三次方及公转周期T的平方的比值都相等。R3kk是及行星无关,而及太阳有关的量。T2(1)(2)若公转轨道为圆,那么R就是指半径。第三定律针对的是绕同一中心天体运动的各星体,若中心天体不同,不能死套周期定律:R地3R火3例如比较地球和火星,就有22k T地 T火
2、k是一个及中心天体太阳有关的常数,及行星无关。第 1 页R月3R卫3例如比较月球和人造卫星,就有k T月2 T卫2k是一个及中心天体地球相关的常数,及卫星无关。R地3例如行星的卫星并非主要绕太阳运动,不能直接和行星比较,即 T地2R月3 T月2例例1.1.已知日地距离为 1.5 亿千米,火星公转周期为 1.88 年,据此可推算得火星到太阳的距离约为A.1.2 亿千米 B.2.3 亿千米C.4.6 亿千米 D.6.9 亿千米解:B(二)1.1.万有引力定律基本概念(1)表述:自然界中任何两个物体都是相互吸引的引力普遍存在;引力的大小跟这两个物体的质量的乘积成正比,跟它们的m1m2距离的二次方成反
3、比F万2Rm1m2(2)公式:F万G2R其中G称为引力常量,适用于任何物体,由卡文迪许首先测出。它在数值上等于两个质量都是 1kg 的质点相距 1m 时的相互作用力:G6.67第 2 页1011Nm2/kg2。(3)定律的适用范围:定律只适用于质点间的相互作用,公式中的R是所研究的两质点间的距离。定律还可用于两均匀球体间的相互作用,公式中的R是两球心间的距离。定律还可用于一均匀球体和球体外另一质点间的相互作用,公式中的R是球心及质点间的距离。例例2.2.已知月球中心到地球中心的距离约是地球半径的 60 倍,两者质量之比M月M地181。问由地球飞往月球的飞船距月球中心多远时,地球及月球对飞船的万
4、有引力的合力恰好为零?解:设飞船质量为m,所求距离为d,据平衡条件有M月mG2GdM地m(60R地d)2解得d6 R地2.2.万有引力和重力(1)地面上物体的重力mg是地球对该物体的万有引力的一个分力。随着纬度的升高,物体所需向心力减小,物体的重力逐渐增大。第 3 页事实上,地球表面的物体受到的万有引力和重力十分接近。Mm例如,在赤道上的一个质量为 1kg 的物体,用F万G2计算出来R 42的万有引力是9.830N,用F向m2R计算出来的的向心力是T0.034N,那么物体受到的重力是mgF万F向9.796N。因此(2)在地面及附近,可认为MmmgG2R那么重力加速度gG例例3.3.已知地球的半
5、径约为MR2黄金代换R,地球表面的重力加速度为g,月球绕地球运动的周期为T。又知月球的公转可看做匀速圆周运动,试用上述物理量表达出地月距离L(L远大于R)。解:L远大于R,可将地球和月球视为质点,由万有引力定律和牛顿第二定律有Mm月42G2m月2LLTMm物在地球表面,有m物gG2R3gR2T2联立、式解得L 42第 4 页(3)地球表面附近高度为h(h R)的地方,仍可视为重力等于万有引力:MmmgG(Rh)2GMR2故距地面高度为h的地方,重力加速度g(Rh)2(Rh)2g可见,随高度的增大,重力加速度迅速减小。例例4.4.在地球某处海平面上测得物体自由下落高度h时所经历的时间为t。在某高
6、山顶上测得物体下落同样的高度所需时间增加了 t。已知地球半径为R,试用上述各量表达山的高度H。2h解:设地面的重力加速度为g,据直线运动规律有g2t 2h设高山顶上的重力加速度为g,同理有g(tt)2gtt2则()gt在地面附近,可认为重力等于万有引力,有mgGMmR2MmmgG(RH)2g RH2则()g R第 5 页tt RHt联立式得解得HRt Rt3.3.利用万有引力定律测量天体质量和密度利用万有引力定律测量天体质量和密度(1 1)以天体表面的物体为研究对象以天体表面的物体为研究对象设星球半径为R,在天体表面有:mgGMmR2gR2 4M 3g3得M;而VR,则G3V4GR例例5.5.
7、已知地球表面的重力加速度为 9.8m/s2,地球半径为 6.4103km,引力常量为 6.671011Nm2/kg2。(1)试估算地球的平均密度。(2)已知地核的体积约为整个地球体积的 16%,地核的质量约为地球质量的 34%,试估算地核的平均密度。解:设地面上有一质量为m的物体,它所受到的地球引力近似等于它的重力:MmgR2mgG2得M地RGM地 3g 39.83地116 kg/m V地4GR43.146.67106.4105.48103kg/m3 0.34M地 17核地11.6103kg/m30.16V地8例例6.6.宇航员在地球表面以一定的初速度竖直上抛一小球,经过时间t小球第 6 页落
8、回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过 5t的时间后小球才落回原处(地球重力加速度取g10m/s2,空气阻力不计),求:(1)该星球表面附近的重力加速度;(2)已知该星球的半径及地球半径之比为R星R地14,求该星球的质量和地球质量之比。v解:物体作竖直上抛运动时,上升时间ta 1g星 t则a即得g星2 m/s2tg地 5tMm在星球表面有mgG2,R2Mg R 1星星星2故有MgR即M地g地R地2 80(2 2)以绕中心天体运动的物体为研究对象以绕中心天体运动的物体为研究对象设物体的轨道半径为r,由牛顿第二定律及万有引力定律有F万F向Gm 42Mmr2mv2rm2rmv
9、T2rm42f2rv2 423得Mr2r;GG T 4若已知中心天体的半径R,VR3,3第 7 页M则V特别地,若物体是在中心天体表面附近飞行,则有Rr例例7.7.一飞船在某行星表面附近沿圆轨道绕该行星飞行,测得飞船绕行一周所需时间为T,若该行星的密度可视为是均匀的,求该行星密度的表达式。(引力常量为G)解:据万有引力和牛顿第二定律有Mm 42G2m2rrT 423得M2rG T由于飞船是在行星表面附近飞行,可认为轨道半径r及星球半径R相等,有 4Vr33M 3则2VG T(三)1.1.人造卫星人造卫星的发射所谓“发射速度”并非指火箭的起飞速度,而是卫星脱离火箭进入“发射速度”并非指火箭的起飞
10、速度,而是卫星脱离火箭进入轨道时的速度。轨道时的速度。第 8 页2.2.人造卫星的在轨运行很多人造地球卫星进入轨道后,就以一稳定的速度做匀速圆周运动,轨道中心在地心。其运动所需的向心力由地球对卫星的万有引力提供。于是有2Mmv2 4222G2mmrm2rm4f rrrT其中r为轨道半径,设地球半径为R,卫星距地面的高度为h,则rR地h。卫星按照不同的用途被安排在距地高度不同的圆轨道上。比较不同轨道上的卫星,它们的运行参数和轨道半径间有下列关系:Mmv2 1绕行速度v和半径r:由G2m得v 2,rrr可见r越大,绕行速度越小。即卫星的轨道越高,其线速度越小。Mm 1角速度和半径r:由G2m2r得
11、2 3rr可见r越大,角速度越小。Mm 42 2 3环绕周期T和半径r:由G2m2r得TrrT可见r越大,周期T越大。Mm 1卫星的向心加速度a和半径r:由G2ma得a 2rr第 9 页可见r越大,向心加速度a越小。例例8.8.火星有两颗卫星,分别是火卫一和火卫二,它们的轨道近似为圆,已知火卫一的周期为 7h39min,火卫二的周期是 30h18min,那么两颗卫星相比较:A.B.C.D.火卫一距火星表面近火卫二的角速度较大火卫一的运动速度较大火卫二的向心加速度较大解:AC3.3.三种宇宙速度(1 1)第一宇宙速度卫星脱离火箭,被火箭发射到轨道上时,有一个最小发射速度,若卫星脱离火箭时的速度比
12、它还小,卫星将象炮弹一样落回地面。这一最小发射速度称为第一宇宙速度,记为v。卫星以该速度运行时,处于最低的近地轨道,如果轨道再低,卫星的运行将受到空气阻力的影响,会坠落回地面。此时轨道距地面约200km,其轨道半径可视为地球半径。v是卫星的最小发射速度,若发射速度达不到v,卫星将坠回地面。v是卫星轨道为圆形时的最大绕行速度,若速度再增大,轨道将第 10 页不再是圆。例例9.9.已知地球半径为R,地球表面的重力加速度为g,不考虑地球自转的影响,(1)试推导第一宇宙速度v1的表达式。(2)若某卫星绕地球做匀速圆周运动,运行轨道距地面高度为h,求卫星的运行周期T。解:(1)卫星绕地运动时,设轨道半径
13、为r,据万有引力定律和牛顿第二定律有:Mmv2G2mrr由于卫星此时在地表附近飞行,有mgGrR联立可解得vgR地7.9km/s(2)据万有引力定律和牛顿第二定律有:Mm 42G2m2(Rh)(Rh)T对于地面上的物体,有m物gGMm物Mmr2R2联立可解得T2RhRh R g(2 2)第二宇宙速度和第三宇宙速度第 11 页如果第三级火箭进入圆轨道后,发动机继续工作,使得卫星的发射速度大于 7.9km/s,那么卫星将沿椭圆轨道运行;若卫星的发射速度进一步增大,达到 11.2km/s 时,卫星就会脱离地球的引力而不再绕地运行。此后卫星将成为绕太阳运行的人造行星或者向其它行星飞去。这个速度是航天器
14、能够脱离地球引力的最小速度,称为第二宇宙速度,记为v,也称为地球表面的逃逸速度。如果发射速度进一步增大,达到 16.7km/s 以上时,航天器将脱离太阳引力束缚,飞到太阳系以外的宇宙中,不再返回太阳系或地球。这一速度称为第三宇宙速度,记为v。4.4.地球同步静止卫星卫星绕地球旋转周期及地球自转周期完全相同,相对位置保持不变。此卫星在地球上看来是静止地挂在高空,称为地球同步静止卫星,简称同步卫星或静止卫星。(1 1)同步卫星的特点轨道为圆。如果它的轨道是椭圆,则地球应处于椭圆的一个焦点上,卫星在绕地球运转的过程中就必然会出现近地点和远地点,当卫星向近地点运行时,卫星的轨道半径将减小,地球对它的万
15、有引力就变大,卫星的周期变小;反之,当卫星向远地点运行时,卫星的轨道半径将变大,地球对它的万有引力就减小,卫星的周期变大,这也就不能保持同步了。所以第 12 页同步卫星轨道不是椭圆,而只能是圆。轨道平面及赤道共面。假设卫星发射在北纬某地的上空的B点,其受力情况如图 1 所示,由于该卫星绕地轴做圆周运动所需的向心力只能由万有引力的一个分力F1提供,而万有引力的另一个分力F2就会使该卫星离开B点向赤道运动。所以卫星若发射在赤道平面的上方(或下方)某处,则卫星在绕地轴做圆周运动的同时,也向赤道平面运动,它的运动就不会稳定,从而使卫星不能及地球同步,所以要使卫星及地球同步运行,必须要求卫星的轨道及地球
16、赤道共面。高度固定。在赤道上空的同步卫星,它受到的唯一的力万有引力提供卫星绕地轴运转所需的向心力。当卫星离地面的高度h取某一定值时,卫星绕地轴运转就可以及地球自转同步,两者的周期均为T=24h。设地球质量为M,地球半径为R,卫星质量为m,离地面的高度为h,则有3GMT2Mm 42Gm(Rh)得hR(Rh)2T2 42将R=6400km,G=6.6710-11Nm2/kg2,M=6.01024kg,T=24h=86400s 代入上式得第 13 页h h=3.6=3.610104 4kmkm即同步卫星距离地面的高度相同(均为h=3.6104km),必然定位于赤道上空的同一个大圆上。赤道上空的这一位
17、置被科学家们喻为“黄金圈”,是各国在太空主要争夺的领域之一。(2 2)同步卫星的发射同步卫星的发射,通常都采用变轨发射的方法。如图所示,先是用运载火箭把卫星送入近地圆轨道 1,待卫星运行状态稳定后,在近地点(a点),卫星的火箭开始点火加速,把卫星送入椭圆轨道 2(称为转移轨道)上,椭圆轨道的远地点(b点)距地心距离等于同步轨道半径。以后再在地面测控站的控制下,利用遥控指令选择在远地点启动星载发动机点火加速,使卫星逐步调整至同步圆轨道 3 运行。相反,对返回式卫星(或飞船)在回收时,应在远地点b和近地点a分别使卫星(或飞船)减速,使卫星从高轨道进入椭圆轨道,再回到近地轨道,最后进入大气层,落回地
18、面。试比较下列速度:卫星在近地轨道上的绕行速度v1,卫星在椭圆轨道近地点的速度v2,卫星在远地点的速度v3,卫星在同步轨道上的绕行速度v4:据vGMr可知,圆轨道半径越大,绕行速度越小,故v1v4;第 14 页卫星在a点要点火加速,故v2v1;椭圆轨道上近地点速度要大于远地点速度,故v2v3;卫星在 b 点要点火加速,故v4v3。综上所述有v2v1v4v3。5.5.双星和多星系统宇宙中的那些相距较近,质量可以比拟的两颗星球,它们离其他星球较远,其他星球对它们的万有引力可忽略。在这种情况下,它们将各自围绕其连线上的某一固定点做同周期的匀速圆周运动,这种结构称为双星。(1)双星系统中的两颗星球及其
19、固定点共线,只受相互间的万有引力,它们运转的角速度和周期相同。(2)固定点离质量大的星球较近。如图,设双星绕固定点O运转,双星间距为L,双星的质量分别是m1和m2,它们到固定点的距离分别是r1和r2,1由于双星运转的角速度相同,由Fm2r得rmr1m2即 r2 m1又r1r2Lm2m1联立解得r1L,r2L m1m2 m1m2若m1 m2,则有r10,r2L第 15 页即原来的固定点几乎及m1重合,这样m1就成为中心天体,如地球和太阳系统及地球和月亮系统。例例10.10.两个星球组成了双星系统,它们在相互间的万有引力作用下绕连线上的某一点作周期相同的匀速圆周运动,现测得两星中心的间距为R,周期为T,求两星的总质量。解:双星系统中,两星做圆周运动的向心力都由两星间的万有引力充当,并且周期相同。设两星的质量分别是M1和M2,它们距固定点的距离分别是r1和r2,因此有:M1M2 42M1M2 42GM1r1,GM2r2,R2T2R2T2 42 r1R2 42 r2R2得M1,M2,22 GT GT 42R3那么双星的总质量M2 GT第 16 页