2015中考经典相似三角形练习题.pdf

上传人:ylj18****70940 文档编号:73491673 上传时间:2023-02-19 格式:PDF 页数:65 大小:4.61MB
返回 下载 相关 举报
2015中考经典相似三角形练习题.pdf_第1页
第1页 / 共65页
2015中考经典相似三角形练习题.pdf_第2页
第2页 / 共65页
点击查看更多>>
资源描述

《2015中考经典相似三角形练习题.pdf》由会员分享,可在线阅读,更多相关《2015中考经典相似三角形练习题.pdf(65页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、经典练习题 相似三角形(附答案)一解答题(共 30 小题)1如图,在ABC 中,DEBC,EFAB,求证:ADEEFC 2如图,梯形 ABCD 中,ABCD,点 F 在 BC 上,连 DF 与 AB 的延长线交于点 G(1)求证:CDFBGF;(2)当点 F 是 BC 的中点时,过 F 作 EFCD 交 AD 于点 E,若 AB=6cm,EF=4cm,求 CD 的长 3如图,点 D,E 在 BC 上,且 FDAB,FEAC 求证:ABCFDE 文档 4如图,已知 E 是矩形 ABCD 的边 CD 上一点,BFAE 于 F,试说明:ABFEAD 5已知:如图所示,在ABC 和ADE 中,AB=A

2、C,AD=AE,BAC=DAE,且点 B,A,D 在一条直线上,连接 BE,CD,M,N 分别为 BE,CD 的中点(1)求证:BE=CD;AMN 是等腰三角形;(2)在图的基础上,将ADE 绕点 A 按顺时针方向旋转 180,其他条件不变,得到图所示的图形请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图中延长 ED 交线段 BC 于点 P求证:PBDAMN 6如图,E 是 ABCD 的边 BA 延长线上一点,连接 EC,交 AD 于点 F在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明 文档 7如图,在 43 的正方形方格中,ABC

3、 和DEF 的顶点都在边长为 1 的小正方形的顶点上(1)填空:ABC=_,BC=_;(2)判断ABC 与DEC 是否相似,并证明你的结论 8 如图,已知矩形 ABCD 的边长 AB=3cm,BC=6cm某一时刻,动点 M 从 A 点出发沿 AB 方向以 1cm/s的速度向 B 点匀速运动;同时,动点 N 从 D 点出发沿 DA 方向以 2cm/s 的速度向 A 点匀速运动,问:(1)经过多少时间,AMN 的面积等于矩形 ABCD 面积的?(2)是否存在时刻 t,使以 A,M,N 为顶点的三角形与ACD 相似?若存在,求 t 的值;若不存在,请说明理由 文档 9如图,在梯形 ABCD 中,若

4、ABDC,AD=BC,对角线 BD、AC 把梯形分成了四个小三角形(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明 10如图ABC 中,D 为 AC 上一点,CD=2DA,BAC=45,BDC=60,CEBD 于 E,连接 AE(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求BEC 与BEA 的面积之比 11如图,在ABC 中,AB=AC=a,M 为底边 BC 上的任意一点,过点 M 分别作 AB、AC

5、 的平行线交 AC于 P,交 AB 于 Q(1)求四边形 AQMP 的周长;(2)写出图中的两对相似三角形(不需证明);文档(3)M 位于 BC 的什么位置时,四边形 AQMP 为菱形并证明你的结论 12已知:P 是正方形 ABCD 的边 BC 上的点,且 BP=3PC,M 是 CD 的中点,试说明:ADMMCP 13如图,已知梯形 ABCD 中,ADBC,AD=2,AB=BC=8,CD=10(1)求梯形 ABCD 的面积 S;(2)动点 P 从点 B 出发,以 1cm/s 的速度,沿 BADC 方向,向点 C 运动;动点 Q 从点 C 出发,以1cm/s 的速度,沿 CDA 方向,向点 A

6、运动,过点 Q 作 QEBC 于点 E若 P、Q 两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为 t 秒问:当点 P 在 BA 上运动时,是否存在这样的 t,使得直线 PQ 将梯形 ABCD 的周长平分?若存在,请求出t 的值;若不存在,请说明理由;在运动过程中,是否存在这样的 t,使得以 P、A、D 为顶点的三角形与CQE 相似?若存在,请求出所有符合条件的 t 的值;若不存在,请说明理由;文档 在运动过程中,是否存在这样的 t,使得以 P、D、Q 为顶点的三角形恰好是以 DQ 为一腰的等腰三角形?若存在,请求出所有符合条件的 t 的值;若不存在,请说明理由 14已知矩形

7、 ABCD,长 BC=12cm,宽 AB=8cm,P、Q 分别是 AB、BC 上运动的两点若 P 自点 A 出发,以 1cm/s 的速度沿 AB 方向运动,同时,Q 自点 B 出发以 2cm/s 的速度沿 BC 方向运动,问经过几秒,以 P、B、Q 为顶点的三角形与BDC 相似?15如图,在ABC 中,AB=10cm,BC=20cm,点 P 从点 A 开始沿 AB 边向 B 点以 2cm/s 的速度移动,点 Q 从点 B 开始沿 BC 边向点 C 以 4cm/s 的速度移动,如果 P、Q 分别从 A、B 同时出发,问经过几秒钟,PBQ 与ABC 相似 16如图,ACB=ADC=90,AC=,A

8、D=2问当 AB 的长为多少时,这两个直角三角形相似 文档 17已知,如图,在边长为 a 的正方形 ABCD 中,M 是 AD 的中点,能否在边 AB 上找一点 N(不含 A、B),使得CDM 与MAN 相似?若能,请给出证明,若不能,请说明理由 18如图在ABC 中,C=90,BC=8cm,AC=6cm,点 Q 从 B 出发,沿 BC 方向以 2cm/s 的速度移动,点 P 从 C 出发,沿 CA 方向以 1cm/s 的速度移动若 Q、P 分别同时从 B、C 出发,试探究经过多少秒后,以点 C、P、Q 为顶点的三角形与CBA 相似?19如图所示,梯形 ABCD 中,ADBC,A=90,AB=

9、7,AD=2,BC=3,试在腰 AB 上确定点 P 的位置,使得以 P,A,D 为顶点的三角形与以 P,B,C 为顶点的三角形相似 文档 20ABC 和DEF 是两个等腰直角三角形,A=D=90,DEF 的顶点 E 位于边 BC 的中点上(1)如图 1,设 DE 与 AB 交于点 M,EF 与 AC 交于点 N,求证:BEMCNE;(2)如图 2,将DEF 绕点 E 旋转,使得 DE 与 BA 的延长线交于点 M,EF 与 AC 交于点 N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论 21 如图,在矩形 ABCD 中,AB=15cm,BC=10cm,点 P 沿

10、AB 边从点 A 开始向 B 以 2cm/s 的速度移动;点 Q 沿 DA 边从点 D 开始向点 A 以 1cm/s 的速度移动如果 P、Q 同时出发,用 t(秒)表示移动的时间,那么当 t 为何值时,以点 Q、A、P 为顶点的三角形与ABC 相似 文档 22如图,路灯(P 点)距地面 8 米,身高 1.6 米的小明从距路灯的底部(O 点)20 米的 A 点,沿 OA 所在的直线行走 14 米到 B 点时,身影的长度是变长了还是变短了?变长或变短了多少米?23阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺

11、,小平面镜请你在他们提供的测量工具中选出所需工具,设计一种测量方案(1)所需的测量工具是:_;(2)请在下图中画出测量示意图;(3)设树高 AB 的长度为 x,请用所测数据(用小写字母表示)求出 x 24 问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量 下面是他们通过测量得到的一些信息:文档 甲组:如图 1,测得一根直立于平地,长为 80cm 的竹竿的影长为 60cm 乙组:如图 2,测得学校旗杆的影长为 900cm 丙组:如图 3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为 200cm,影长为156cm任务要求:(1)请根据

12、甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图 3,设太阳光线 NH 与O 相切于点 M请根据甲、丙两组得到的信息,求景灯灯罩的半径(友情提示:如图 3,景灯的影长等于线段 NG 的影长;需要时可采用等式 1562+2082=2602)25阳光通过窗口照射到室内,在地面上留下 2.7m 宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高 AB=1.8m,求窗口底边离地面的高 BC 文档 26 如图,李华晚上在路灯下散步 已知李华的身高AB=h,灯柱的高OP=OP=l,两灯柱之间的距离OO=m (1)若李华距灯柱 OP 的水平距离 OA=a,求他影子 AC 的长;(2)

13、若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点 A 朝着影子(如图箭头)的方向以 v1匀速行走,试求他影子的顶端在地面上移动的速度v2 27如图,分别以直角三角形 ABC 三边为直径向外作三个半圆,其面积分别用 S1,S2,S3表示,则不难证明 S1=S2+S3(1)如图,分别以直角三角形 ABC 三边为边向外作三个正方形,其面积分别用 S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)文档(2)如图,分别以直角三角形 ABC 三边为边向外作三个正三角形,其面积分别用 S1、S2、S3表示,请你确定 S1,S2,S3

14、之间的关系并加以证明;(3)若分别以直角三角形 ABC 三边为边向外作三个一般三角形,其面积分别用 S1,S2,S3表示,为使 S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论 文档 28已知:如图,ABCADE,AB=15,AC=9,BD=5求 AE 29已知:如图 RtABCRtBDC,若 AB=3,AC=4(1)求 BD、CD 的长;(2)过 B 作 BEDC 于 E,求 BE 的长 文档 30(1)已知,且 3x+4z2y=40,求 x,y,z 的值;(2)已知:两相似三角形对应

15、高的比为 3:10,且这两个三角形的周长差为 560cm,求它们的周长 文档 参考答案与试题解析 一解答题(共 30 小题)1如图,在ABC 中,DEBC,EFAB,求证:ADEEFC 考点:相似三角形的判定;平行线的性质。专题:证明题。分析:根据平行线的性质可知AED=C,A=FEC,根据相似三角形的判定定理可知ADEEFC 解答:证明:DEBC,DEFC,AED=C 又EFAB,EFAD,A=FEC ADEEFC 点评:本题考查的是平行线的性质及相似三角形的判定定理 文档 2如图,梯形 ABCD 中,ABCD,点 F 在 BC 上,连 DF 与 AB 的延长线交于点 G(1)求证:CDFB

16、GF;(2)当点 F 是 BC 的中点时,过 F 作 EFCD 交 AD 于点 E,若 AB=6cm,EF=4cm,求 CD 的长 考点:相似三角形的判定;三角形中位线定理;梯形。专题:几何综合题。分析:(1)利用平行线的性质可证明CDFBGF(2)根据点 F 是 BC 的中点这一已知条件,可得CDFBGF,则 CD=BG,只要求出 BG 的长即可解题 解答:(1)证明:梯形 ABCD,ABCD,CDF=FGB,DCF=GBF,(2 分)CDFBGF(3 分)(2)解:由(1)CDFBGF,文档 又 F 是 BC 的中点,BF=FC,CDFBGF,DF=GF,CD=BG,(6 分)ABDCEF

17、,F 为 BC 中点,E 为 AD 中点,EF 是DAG 的中位线,2EF=AG=AB+BG BG=2EFAB=246=2,CD=BG=2cm(8 分)点评:本题主要考查了相似三角形的判定定理及性质,全等三角形的判定及线段的等量代换,比较复杂 3如图,点 D,E 在 BC 上,且 FDAB,FEAC 求证:ABCFDE 考点:相似三角形的判定。文档 专题:证明题。分析:由 FDAB,FEAC,可知B=FDE,C=FED,根据三角形相似的判定定理可知:ABCFDE 解答:证明:FDAB,FEAC,B=FDE,C=FED,ABCFDE 点评:本题很简单,考查的是相似三角形的判定定理:(1)如果两个

18、三角形的两个角对应相等,那么这两个三角形相似;(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似 4如图,已知 E 是矩形 ABCD 的边 CD 上一点,BFAE 于 F,试说明:ABFEAD 考点:相似三角形的判定;矩形的性质。专题:证明题。文档 分析:根据两角对应相等的两个三角形相似可解 解答:证明:矩形 ABCD 中,ABCD,D=90,(2 分)BAF=AED(4 分)BFAE,AFB=90 AFB=D(5 分)ABFEAD(6 分)点评:考查相似三角形的判

19、定定理,关键是找准对应的角 5已知:如图所示,在ABC 和ADE 中,AB=AC,AD=AE,BAC=DAE,且点 B,A,D 在一条直线上,连接 BE,CD,M,N 分别为 BE,CD 的中点(1)求证:BE=CD;AMN 是等腰三角形;(2)在图的基础上,将ADE 绕点 A 按顺时针方向旋转 180,其他条件不变,得到图所示的图形请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图中延长 ED 交线段 BC 于点 P求证:PBDAMN 文档 考点:相似三角形的判定;全等三角形的判定;等腰三角形的判定;旋转的性质。专题:几何综合题。分析:(1)因为BAC=DAE,所以B

20、AE=CAD,又因为 AB=AC,AD=AE,利用 SAS 可证出BAECAD,可知 BE、CD 是对应边,根据全等三角形对应边上的中线相等,可证AMN 是等腰三角形(2)利用(1)中的证明方法仍然可以得出(1)中的结论,思路不变(3)先证出ABMACN(SAS),可得出CAN=BAM,所以BAC=MAN(等角加等角和相等),又BAC=DAE,所以MAN=DAE=BAC,所以AMN,ADE 和ABC 都是顶角相等的等腰三角形,所以PBD=AMN,所以PBDAMN(两个角对应相等,两三角形相似)解答:(1)证明:BAC=DAE,BAE=CAD,AB=AC,AD=AE,ABEACD,BE=CD 由

21、ABEACD,得 ABE=ACD,BE=CD,M、N 分别是 BE,CD 的中点,BM=CN 文档 又AB=AC,ABMACN AM=AN,即AMN 为等腰三角形 (2)解:(1)中的两个结论仍然成立 (3)证明:在图中正确画出线段 PD,由(1)同理可证ABMACN,CAN=BAMBAC=MAN 又BAC=DAE,MAN=DAE=BAC AMN,ADE 和ABC 都是顶角相等的等腰三角形 PBD 和AMN 都为顶角相等的等腰三角形,PBD=AMN,PDB=ANM,PBDAMN 点评:本题利用了全等三角形的判定和性质,以及等腰三角形一个顶角相等,则底角相等的性质,还有相似三角形的判定(两个角对

22、应相等的两个三角形相似)文档 6如图,E 是 ABCD 的边 BA 延长线上一点,连接 EC,交 AD 于点 F在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明 考点:相似三角形的判定;平行四边形的性质。专题:开放型。分析:根据平行线的性质和两角对应相等的两个三角形相似这一判定定理可证明图中相似三角形有:AEFBEC;AEFDCF;BECDCF 解答:解:相似三角形有AEFBEC;AEFDCF;BECDCF(3 分)如:AEFBEC 在 ABCD 中,ADBC,1=B,2=3(6 分)AEFBEC(7 分)点评:考查了平行线的性质及相似三角形的判定定理 文档

23、7如图,在 43 的正方形方格中,ABC 和DEF 的顶点都在边长为 1 的小正方形的顶点上(1)填空:ABC=135,BC=;(2)判断ABC 与DEC 是否相似,并证明你的结论 考点:相似三角形的判定;正方形的性质。专题:证明题;网格型。分析:(1)观察可得:BF=FC=2,故FBC=45;则ABC=135,BC=2;(2)观察可得:BC、EC 的长为 2、,可得,再根据其夹角相等;故ABCDEC 解答:解:(1)ABC=135,BC=;(2)相似;BC=,EC=;,;文档 又ABC=CED=135,ABCDEC 点评:解答本题要充分利用正方形的特殊性质注意在正方形中的特殊三角形的应用,搞

24、清楚矩形、菱形、正方形中的三角形的三边关系,可有助于提高解题速度和准确率 8 如图,已知矩形 ABCD 的边长 AB=3cm,BC=6cm某一时刻,动点 M 从 A 点出发沿 AB 方向以 1cm/s的速度向 B 点匀速运动;同时,动点 N 从 D 点出发沿 DA 方向以 2cm/s 的速度向 A 点匀速运动,问:(1)经过多少时间,AMN 的面积等于矩形 ABCD 面积的?(2)是否存在时刻 t,使以 A,M,N 为顶点的三角形与ACD 相似?若存在,求 t 的值;若不存在,请说明理由 考点:相似三角形的判定;一元二次方程的应用;分式方程的应用;正方形的性质。专题:动点型。分析:(1)关于动

25、点问题,可设时间为 x,根据速度表示出所涉及到的线段的长度,找到相等关系,列方程求解即可,如本题中利用,AMN 的面积等于矩形 ABCD 面积的 作为相等关系;(2)先假设相似,利用相似中的比例线段列出方程,有解的且符合题意的 t 值即可说明存在,反之文档 则不存在 解答:解:(1)设经过 x 秒后,AMN 的面积等于矩形 ABCD 面积的,则有:(62x)x=36,即 x23x+2=0,(2 分)解方程,得 x1=1,x2=2,(3 分)经检验,可知 x1=1,x2=2 符合题意,所以经过 1 秒或 2 秒后,AMN 的面积等于矩形 ABCD 面积的 (4 分)(2)假设经过 t 秒时,以

26、A,M,N 为顶点的三角形与ACD 相似,由矩形 ABCD,可得CDA=MAN=90,因此有或(5 分)即,或(6 分)解,得 t=;解,得 t=(7 分)经检验,t=或 t=都符合题意,所以动点 M,N 同时出发后,经过 秒或秒时,以 A,M,N 为顶点的三角形与ACD 相似(8分)点评:主要考查了相似三角形的判定,正方形的性质和一元二次方程的运用以及解分式方程要掌握正方形和相似三角形的性质,才会灵活的运用注意:一般关于动点问题,可设时间为 x,根据速度表示出所涉及到的线段的长度,找到相等关系,列方程求解即可 文档 9如图,在梯形 ABCD 中,若 ABDC,AD=BC,对角线 BD、AC

27、把梯形分成了四个小三角形(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明 考点:相似三角形的判定;概率公式。专题:开放型。分析:(1)采用列举法,列举出所有可能出现的情况,再找出相似三角形即可求得;与,与相似;(2)利用相似三角形的判定定理即可证得 解答:解:(1)任选两个三角形的所有可能情况如下六种情况:,(2 分)其中有两组(,)是相似的 选取到的二个三角形是相似三角形的概率是 P=(4 分)证明:(2)选择、证明 文档 在AOB 与COD 中,ABCD,CDB=

28、DBA,DCA=CAB,AOBCOD(8 分)选择、证明 四边形 ABCD 是等腰梯形,DAB=CBA,在DAB 与CBA 中有 AD=BC,DAB=CAB,AB=AB,DABCBA,(6 分)ADO=BCO 又DOA=COB,DOACOB(8 分)点评:此题考查概率的求法:如果一个事件有 n 种可能,而且这些事件的可能性相同,其中事件 A 出现 m种结果,那么事件 A 的概率 P(A)=,即相似三角形的证明还考查了相似三角形的判定 10附加题:如图ABC 中,D 为 AC 上一点,CD=2DA,BAC=45,BDC=60,CEBD 于 E,连接AE 文档(1)写出图中所有相等的线段,并加以证

29、明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求BEC 与BEA 的面积之比 考点:相似三角形的判定;三角形的面积;含 30 度角的直角三角形。专题:综合题。分析:(1)根据直角三角形中 30 度角所对的直角边是斜边的一半,可知 CD=2ED,则可写出相等的线段;(2)两角对应相等的两个三角形相似则可判断ADEAEC;(3)要求BEC 与BEA 的面积之比,从图中可看出两三角形有一公共边可作为底边,若求得高之比可知面积之比,由此需作BEA 的边 BE 边上的高即可求解 解答:解:(1)AD=DE,AE=CE CEBD,BDC=60,在 RtCED 中,ECD=30

30、CD=2ED CD=2DA,文档 AD=DE,DAE=DEA=30=ECD AE=CE (2)图中有三角形相似,ADEAEC;CAE=CAE,ADE=AEC,ADEAEC;(3)作 AFBD 的延长线于 F,设 AD=DE=x,在 RtCED 中,可得 CE=,故 AE=ECD=30 在 RtAEF 中,AE=,AED=DAE=30,sinAEF=,AF=AEsinAEF=文档 点评:本题主要考查了直角三角形的性质,相似三角形的判定及三角形面积的求法等,范围较广 11如图,在ABC 中,AB=AC=a,M 为底边 BC 上的任意一点,过点 M 分别作 AB、AC 的平行线交 AC于 P,交 A

31、B 于 Q(1)求四边形 AQMP 的周长;(2)写出图中的两对相似三角形(不需证明);(3)M 位于 BC 的什么位置时,四边形 AQMP 为菱形并证明你的结论 考点:相似三角形的判定;菱形的判定。专题:综合题。分析:(1)根据平行四边形的性质可得到对应角相等对应边相等,从而不难求得其周长;(2)因为B=C=PMC=QMB,所以PMCQMBABC;文档(3)根据中位线的性质及菱形的判定不难求得四边形 AQMP 为菱形 解答:解:(1)ABMP,QMAC,四边形 APMQ 是平行四边形,B=PMC,C=QMB AB=AC,B=C,PMC=QMB BQ=QM,PM=PC 四边形 AQMP 的周长

32、=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a (2)PMAB,PCMACB,QMAC,BMQBCA;(3)当点 M 中 BC 的中点时,四边形 APMQ 是菱形,点 M 是 BC 的中点,ABMP,QMAC,QM,PM 是三角形 ABC 的中位线 文档 AB=AC,QM=PM=AB=AC 又由(1)知四边形 APMQ 是平行四边形,平行四边形 APMQ 是菱形 点评:此题主要考查了平行四边形的判定和性质,中位线的性质,菱形的判定等知识点的综合运用 12已知:P 是正方形 ABCD 的边 BC 上的点,且 BP=3PC,M 是 CD 的中点,试说明:ADMMCP 考点:相似

33、三角形的判定;正方形的性质。专题:证明题。分析:欲证ADMMCP,通过观察发现两个三角形已经具备一组角对应相等,即D=C,此时,再求夹此对应角的两边对应成比例即可 解答:证明:正方形 ABCD,M 为 CD 中点,CM=MD=AD BP=3PC,文档 PC=BC=AD=CM PCM=ADM=90,MCPADM 点评:本题考查相似三角形的判定识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法 13如图,已知梯形 ABCD 中,ADBC,A

34、D=2,AB=BC=8,CD=10(1)求梯形 ABCD 的面积 S;(2)动点 P 从点 B 出发,以 1cm/s 的速度,沿 BADC 方向,向点 C 运动;动点 Q 从点 C 出发,以1cm/s 的速度,沿 CDA 方向,向点 A 运动,过点 Q 作 QEBC 于点 E若 P、Q 两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为 t 秒问:当点 P 在 BA 上运动时,是否存在这样的 t,使得直线 PQ 将梯形 ABCD 的周长平分?若存在,请求出t 的值;若不存在,请说明理由;在运动过程中,是否存在这样的 t,使得以 P、A、D 为顶点的三角形与CQE 相似?若存在,

35、请求出所有符合条件的 t 的值;若不存在,请说明理由;在运动过程中,是否存在这样的 t,使得以 P、D、Q 为顶点的三角形恰好是以 DQ 为一腰的等腰三角形?若存在,请求出所有符合条件的 t 的值;若不存在,请说明理由 文档 考点:相似三角形的判定;三角形三边关系;等腰三角形的判定;勾股定理;直角梯形。专题:动点型;开放型。分析:(1)求面积要先求梯形的高,可根据两底的差和 CD 的长,在直角三角形中用勾股定理进行求解,得出高后即可求出梯形的面积(2)PQ 平分梯形的周长,那么 AD+DQ+AP=BC+CQ+BP,已知了 AD,BC 的长,可以用 t 来表示出 AP,BP,CQ,QD 的长,那

36、么可根据上面的等量关系求出 t 的值 本题要分三种情况进行讨论:一,当 P 在 AB 上时,即 0t8,如果两三角形相似,那么C=ADP,或C=APD,那么在ADP中根据C 的正切值,求出 t 的值 二,当 P 在 AD 上时,即 8t10,由于 P,A,D 在一条直线上,因此构不成三角形 三,当 P 在 CD 上时,即 10t12,由于ADC 是个钝角,因此ADP 是个钝角三角形因此不可能和直角CQE 相似 综合三种情况即可得出符合条件的 t 的值(3)和(2)相同也要分三种情况进行讨论:一,当 P 在 AB 上时,即 0t8,等腰PDQ 以 DQ 为腰,因此 DQ=DP 或 DQ=PQ,可

37、以通过构文档 建直角三角形来表示出 DP,PQ 的长,然后根据得出的等量关系来求 t 的值 二,当 P 在 AD 上时,即 8t10,由于 BA+AD=CD=10,因此 DP=DQ=10t,因此 DP,DQ恒相等 三,当 P 在 CD 上时,即 10t12,情况同二 综合三种情况可得出等腰三角形以 DQ 为腰时,t 的取值 解答:解:(1)过 D 作 DHAB 交 BC 于 H 点,ADBH,DHAB,四边形 ABHD 是平行四边形 DH=AB=8;BH=AD=2 CH=82=6 CD=10,DH2+CH2=CD2DHC=90 B=DHC=90 梯形 ABCD 是直角梯形 SABCD=(AD+

38、BC)AB=(2+8)8=40 (2)BP=CQ=t,AP=8t,DQ=10t,文档 AP+AD+DQ=PB+BC+CQ,8t+2+10t=t+8+t t=38 当 t=3 秒时,PQ 将梯形 ABCD 周长平分 第一种情况:0t8 若PADQEC 则ADP=C tanADP=tanC=,t=若PADCEQ 则APD=C tanAPD=tanC=,=t=第二种情况:8t10,P、A、D 三点不能组成三角形;第三种情况:10t12ADP 为钝角三角形与 RtCQE 不相似;t=或 t=时,PAD 与CQE 相似 第一种情况:当 0t8 时过 Q 点作 QEBC,QHAB,垂足为 E、H AP=8

39、t,AD=2,PD=文档 CE=t,QE=t,QH=BE=8 t,BH=QE=t PH=t t=t PQ=,DQ=10t:DQ=DP,10t=,解得 t=8 秒:DQ=PQ,10t=,化简得:3t252t+180=0 解得:t=,t=8(不合题意舍去)t=第二种情况:8t10 时DP=DQ=10t 当 8t10 时,以 DQ 为腰的等腰DPQ 恒成立 第三种情况:10t12 时DP=DQ=t10 当 10t12 时,以 DQ 为腰的等腰DPQ 恒成立 综上所述,t=或 8t10 或 10t12 时,以 DQ 为腰的等腰DPQ 成文档 立 点评:本题主要考查了梯形的性质以及相似三角形的判定和性质

40、等知识点,要注意(2)中要根据 P,Q 的不同位置,进行分类讨论,不要漏解 文档 14已知矩形 ABCD,长 BC=12cm,宽 AB=8cm,P、Q 分别是 AB、BC 上运动的两点若 P 自点 A 出发,以 1cm/s 的速度沿 AB 方向运动,同时,Q 自点 B 出发以 2cm/s 的速度沿 BC 方向运动,问经过几秒,以 P、B、Q 为顶点的三角形与BDC 相似?考点:相似三角形的判定;矩形的性质。专题:几何动点问题;分类讨论。分析:要使以 P、B、Q 为顶点的三角形与BDC 相似,则要分两两种情况进行分析分别是PBQBDC或QBPBDC,从而解得所需的时间 解答:解:设经 x 秒后,

41、PBQBCD,由于PBQ=BCD=90,(1)当1=2 时,有:,即;(2)当1=3 时,有:,即,经过秒或 2 秒,PBQBCD 文档 点评:此题考查了相似三角形的判定及矩形的性质等知识点的综合运用 15如图,在ABC 中,AB=10cm,BC=20cm,点 P 从点 A 开始沿 AB 边向 B 点以 2cm/s 的速度移动,点 Q 从点 B 开始沿 BC 边向点 C 以 4cm/s 的速度移动,如果 P、Q 分别从 A、B 同时出发,问经过几秒钟,PBQ 与ABC 相似 考点:相似三角形的判定;一元一次方程的应用。专题:动点型。分析:设经过 t 秒后,PBQ 与ABC 相似,根据路程公式可

42、得 AP=2t,BQ=4t,BP=102t,然后利用相似三角形的性质对应边的比相等列出方程求解即可 解答:解:设经过秒后 t 秒后,PBQ 与ABC 相似,则有 AP=2t,BQ=4t,BP=102t,当PBQABC 时,有 BP:AB=BQ:BC,即(102t):10=4t:20,解得 t=2.5(s)(6 分)文档 当QBPABC 时,有 BQ:AB=BP:BC,即 4t:10=(102t):20,解得 t=1 所以,经过 2.5s 或 1s 时,PBQ 与ABC 相似(10 分)解法二:设 ts 后,PBQ 与ABC 相似,则有,AP=2t,BQ=4t,BP=102t 分两种情况:(1)

43、当 BP 与 AB 对应时,有=,即=,解得 t=2.5s(2)当 BP 与 BC 对应时,有=,即=,解得 t=1s 所以经过 1s 或 2.5s 时,以 P、B、Q 三点为顶点的三角形与ABC 相似 点评:本题综合了路程问题和三角形的问题,所以学生平时学过的知识要会融合起来 16如图,ACB=ADC=90,AC=,AD=2问当 AB 的长为多少时,这两个直角三角形相似 考点:相似三角形的判定。专题:分类讨论。分析:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么文档 这两个直角三角形相似在 RtABC 和 RtACD,直角边的对应需分情况讨论 解答:

44、解:AC=,AD=2,CD=要使这两个直角三角形相似,有两种情况:(1)当 RtABCRtACD 时,有=,AB=3;(2)当 RtACBRtCDA 时,有=,AB=3 故当 AB 的长为 3 或 3时,这两个直角三角形相似 点评:本题考查相似三角形的判定识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比 17已知,如图,在边长为 a 的正方形 ABCD 中,M 是 AD 的中点,能否在边 AB 上找一点 N(不含 A、B),使得CDM 与MAN 相似?若能,请给出证明,若不能,请说明理由 考点:相似三

45、角形的判定;正方形的性质。专题:探究型;分类讨论。分析:两个三角形都是直角三角形,还只需满足一对角对应相等或夹直角的两边对应成比例即可说明两个三文档 角形相似 若 DM 与 AM 对应,则CDM 与MAN 全等,N 与 B 重合,不合题意;若 DM 与 AN 对应,则 CD:AM=DM:AN,得 AN=a,从而确定 N 的位置 解答:证明:分两种情况讨论:若CDMMAN,则=边长为 a,M 是 AD 的中点,AN=a 若CDMNAM,则 边长为 a,M 是 AD 的中点,AN=a,即 N 点与 B 重合,不合题意 所以,能在边 AB 上找一点 N(不含 A、B),使得CDM 与MAN 相似当

46、AN=a 时,N 点的位置满足条件 点评:此题考查相似三角形的判定因不明确对应关系,所以需分类讨论 18如图在ABC 中,C=90,BC=8cm,AC=6cm,点 Q 从 B 出发,沿 BC 方向以 2cm/s 的速度移动,点 P 从 C 出发,沿 CA 方向以 1cm/s 的速度移动若 Q、P 分别同时从 B、C 出发,试探究经过多少秒后,以点 C、P、Q 为顶点的三角形与CBA 相似?文档 考点:相似三角形的判定。专题:综合题;动点型。分析:此题要根据相似三角形的性质设出未知数,即经过 x 秒后,两三角形相似,然后根据速度公式求出他们移动的长度,再根据相似三角形的性质列出分式方程求解 解答

47、:解:设经过 x 秒后,两三角形相似,则 CQ=(82x)cm,CP=xcm,(1 分)C=C=90,当或时,两三角形相似(3 分)(1)当时,x=;(4 分)(2)当时,x=(5 分)所以,经过秒或秒后,两三角形相似(6 分)点评:本题综合考查了路程问题,相似三角形的性质及一元一次方程的解法 19如图所示,梯形 ABCD 中,ADBC,A=90,AB=7,AD=2,BC=3,试在腰 AB 上确定点 P 的位置,使得以 P,A,D 为顶点的三角形与以 P,B,C 为顶点的三角形相似 文档 考点:相似三角形的判定;梯形。专题:分类讨论。分析:此题考查了相似三角形的判定与性质,解题时要认真审题,选

48、择适宜的判定方法解题时要注意一题多解的情况,要注意别漏解 解答:解:(1)若点 A,P,D 分别与点 B,C,P 对应,即APDBCP,=,=,AP27AP+6=0,AP=1 或 AP=6,检测:当 AP=1 时,由 BC=3,AD=2,BP=6,=,又A=B=90,APDBCP 当 AP=6 时,由 BC=3,AD=2,BP=1,又A=B=90,文档 APDBCP (2)若点 A,P,D 分别与点 B,P,C 对应,即APDBPC=,=,AP=检验:当 AP=时,由 BP=,AD=2,BC=3,=,又A=B=90,APDBPC 因此,点 P 的位置有三处,即在线段 AB 距离点 A 的 1、

49、6 处 点评:此题考查了相似三角形的判定和性质;判定为:有两个对应角相等的三角形相似;有两个对应边的比相等,且其夹角相等,则两个三角形相似;三组对应边的比相等,则两个三角形相似;性质为相似三角形的对应角相等,对应边的比相等 20ABC 和DEF 是两个等腰直角三角形,A=D=90,DEF 的顶点 E 位于边 BC 的中点上(1)如图 1,设 DE 与 AB 交于点 M,EF 与 AC 交于点 N,求证:BEMCNE;(2)如图 2,将DEF 绕点 E 旋转,使得 DE 与 BA 的延长线交于点 M,EF 与 AC 交于点 N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你

50、的结论 文档 考点:相似三角形的判定;等腰直角三角形。专题:证明题;开放型。分析:因为此题是特殊的三角形,所以首先要分析等腰直角三角形的性质:可得锐角为 45,根据角之间的关系,利用如果两个三角形的三组对应边的比相等,那么这两个三角形相似可判定三角形相似;再根据性质得到比例线段,有夹角相等证得ECNMEN 解答:证明:(1)ABC 是等腰直角三角形,MBE=45,BME+MEB=135 又DEF 是等腰直角三角形,DEF=45 NEC+MEB=135 BEM=NEC,(4 分)而MBE=ECN=45,BEMCNE(6 分)文档(2)与(1)同理BEMCNE,(8 分)又BE=EC,(10 分)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁