《陕西省2023年教师资格之中学数学学科知识与教学能力高分通关题库A4可打印版.doc》由会员分享,可在线阅读,更多相关《陕西省2023年教师资格之中学数学学科知识与教学能力高分通关题库A4可打印版.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、陕西省陕西省 20232023 年教师资格之中学数学学科知识与教学年教师资格之中学数学学科知识与教学能力高分通关题库能力高分通关题库 A4A4 可打印版可打印版单选题(共单选题(共 5050 题)题)1、关于抗碱血红蛋白的叙述,下列哪项是不正确的A.又称碱变性试验B.珠蛋白生成障碍性贫血时,HbF 减少C.用半饱和硫酸铵中止反应D.用 540nm 波长比色E.测定 HbF 的抗碱能力【答案】B2、男性,10 岁,发热 1 周,并有咽喉痛,最近两天皮肤有皮疹。体检:颈部及腋下浅表淋巴结肿大,肝肋下未及,脾肋下 1cm。入院时血常规结果为:血红蛋白量 113gL:白细胞数 810A.慢性淋巴细胞白
2、血病B.传染性单核细胞增多症C.上呼吸道感染D.恶性淋巴瘤E.急性淋巴细胞白血病【答案】B3、干细胞培养中常将 50 个或大于 50 个的细胞团称为A.集落B.微丛C.小丛D.大丛E.集团【答案】A4、与巨幼细胞性贫血无关的是A.中性粒细胞核分叶增多B.中性粒细胞核左移C.MCV112159flD.MCH3249pgE.MCHC0.320.36【答案】B5、患者,男,51 岁。尿频、尿痛间断发作 2 年,下腹隐痛、肛门坠胀 1 年。查体:肛门指诊双侧前列腺明显增大、压痛、质偏硬,中央沟变浅,肛门括约肌无松弛。前列腺液生化检查锌含量为 1.76mmol/L,B 超显示前列腺增大。肿瘤病人的机体免
3、疫状态A.免疫防御过高B.免疫监视低下C.免疫自稳失调D.免疫耐受增强E.免疫防御低下【答案】B6、关于心肌梗死,下列说法错误的是A.是一种常见的动脉血栓性栓塞性疾病B.血管内皮细胞损伤的检验指标增高C.生化酶学和血栓止血检测是诊断的金指标D.较有价值的观察指标是分子标志物检测E.血小板黏附和聚集功能增强【答案】C7、数据分析是高中数学学科素养之一,数据分析过程主要包括()。A.收集数据,整理数据,提取信息,进行推断,获得结论B.收集数据,整理数据,提取信息,构建模型,进行推断,获得结论C.收集数据,提取信息,构建模型,进行推断,获得结论D.收集数据,整理数据,构建模型,进行推断,获得结论【答
4、案】B8、有人称之谓“打扫战场的清道夫”的细胞是A.淋巴细胞B.中性粒细胞C.嗜酸性粒细胞D.单核细胞E.组织细胞【答案】D9、下列选项中,()属于影响初中数学课程的社会发展因素。A.数学的知识、方法和意义B.从教育的角度对数学所形成的价值认识C.学生的知识、经验和环境背景D.当代社会的科学技术、人文精神中蕴含的数学知识与素养等【答案】D10、“矩形”和“菱形”的概念关系是哪个()。A.同一关系B.交叉关系C.属种关系D.矛盾关系【答案】B11、骨髓增生极度活跃,有核细胞与成熟红细胞的比例为A.1:50B.1:1C.2:5D.1:4E.1:10【答案】B12、普通高中数学课程标准(2017 年
5、版 2020 年修订)中明确提出的数学核心素养不包括()A.数据分析B.直观想象C.数学抽象D.合情推理【答案】D13、肝素酶存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】D14、下列关于数学思想的说法中,错误的一项是()A.数学思想是现实世界的空间形式和数量关系反映到人的意识之中并经过思维活动产生的结果B.数学思想是要在现实世界中找到具有直观意义的现实原型C.数学思想是对数学事实与数学理论概念、定理、公式、法则、方法的本质认识D.数学思想是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观念【答案】B15、患者,男,51 岁。尿频、尿痛间断发作 2 年,下腹隐痛、肛门
6、坠胀 1 年。查体:肛门指诊双侧前列腺明显增大、压痛、质偏硬,中央沟变浅,肛门括约肌无松弛。前列腺液生化检查锌含量为 1.76mmol/L,B 超显示前列腺增大。肿瘤病人的机体免疫状态A.免疫防御过高B.免疫监视低下C.免疫自稳失调D.免疫耐受增强E.免疫防御低下【答案】B16、就红细胞生成素(EP)而言,下述错误的是()A.是一种糖蛋白,主要由肾产生,而人工无制备B.能刺激造血多能干细胞,使形成红细胞系祖细胞C.能促进幼红细胞增殖和成熟D.缺氧状态时,肾产生红细胞素增加E.胎儿时期肝脏也可产生【答案】A17、要定量检测人血清中的生长激素,采用的最佳免疫检测法是()A.免疫荧光法B.免疫酶标记
7、法C.细胞毒试验D.放射免疫测定法E.补体结合试验【答案】D18、下列函数不属于初中数学课程内容的是()。A.一次函数B.二次函数C.指数函数D.反比例函数【答案】C19、在讲解“垂线”一课时,教师自制教具,将两根木条钉在一起并固定其中一根木条 a,转动木条 b,让学生观察,从而导入新课。这种导入方式属于()。A.实例导入B.直观导入C.悬念导入D.故事导入【答案】B20、内源凝血途径和外源凝血途径的主要区别在于A.启动方式和参与的凝血因子不同B.启动方式不同C.启动部位不同D.启动时间不同E.参与的凝血因子不同【答案】A21、数据分析是高中数学学科素养之一,数据分析过程主要包括()。A.收集
8、数据,整理数据,提取信息,进行推断,获得结论B.收集数据,整理数据,提取信息,构建模型,进行推断,获得结论C.收集数据,提取信息,构建模型,进行推断,获得结论D.收集数据,整理数据,构建模型,进行推断,获得结论【答案】B22、冷球蛋白沉淀与复溶解的温度通常为A.-20,4B.-4,37C.-4,0D.0,37E.-20,37【答案】B23、九章算数注的作者是()。A.刘徽B.秦九韶C.杨辉D.赵爽【答案】A24、患者,女,35 岁。发热、咽痛 1 天。查体:扁桃体度肿大,有脓点。实验室检查:血清 ASO 水平为 300U/ml,10 天后血清 ASO 水平上升到1200IU/ml。诊断:急性化
9、脓性扁桃体。血细菌培养发现 A 群 B 溶血性链球菌阳性,尿蛋白(+),尿红细胞(+)。初步诊断为链球菌感染后急性肾小球肾炎。对诊断急性肾小球肾炎最有价值的是A.血清 AS01200IU/mlB.血清肌酐 18mol/LC.血清 BUN13.8mmol/LD.血清补体 CE.尿纤维蛋白降解产物显著增高【答案】D25、证明通常分成直接法和间接法,下列证明方式属于间接法的是()。A.分析法B.综合法C.反证法D.比较法【答案】C26、患者,男,51 岁。尿频、尿痛间断发作 2 年,下腹隐痛、肛门坠胀 1 年。查体:肛门指诊双侧前列腺明显增大、压痛、质偏硬,中央沟变浅,肛门括约肌无松弛。前列腺液生化
10、检查锌含量为 1.76mmol/L,B 超显示前列腺增大。选择前列腺癌的肿瘤标志A.PSAB.CEAC.SCCD.CA125E.CA19-9【答案】A27、下列哪一项是恶性组织细胞病的最重要特征A.骨髓涂片见到形态异常的组织细胞B.全血细胞减少C.血涂片找到不典型的单核细胞D.起病急,高热,衰竭和进行性贫血E.以上都不正确【答案】A28、DIC 时血小板计数一般范围是A.(100300)10B.(50100)10C.(100300)10D.(100300)10E.(100250)10【答案】B29、怀疑为血友病,首选的筛检试验是A.PTB.因子、C.APTTD.FA.FA.CaE.因子、【答案
11、】C30、先天胸腺发育不良综合征是A.原发性 T 细胞免疫缺陷B.原发性 B 细胞免疫缺陷C.原发性联合免疫缺陷D.原发性吞噬细胞缺陷E.获得性免疫缺陷【答案】A31、纤溶酶的主要作用是水解()A.因子B.因子aC.因子D.因子和aE.因子【答案】D32、慢性溶贫时,评价尿中尿胆原下列不正确的是()A.粪中粪胆原增高比尿中尿胆原增高为早B.尿胆原增高同时隐血试验阳性C.受肝脏及消化功能影响D.受肠道菌群及使用抗生素影响E.尿胆原不增高【答案】B33、特种蛋白免疫分析仪是基于抗原-抗体反应原理,不溶性免疫复合物可使溶液浊度改变,再通过浊度检测标本中微量物质的分析方法。免疫浊度分析的必备试剂不包括
12、A.多抗血清(R 型)B.高分子物质增浊剂C.20%聚乙二醇D.浑浊样品澄清剂E.校正品【答案】C34、以下哪些不属于学段目标中情感与态度方面的。()A.感受数学思考过程的合理性。B.感受数学思考过程的条理性和数学结论的确定性。C.获得成功的体验,有学好数学的信心。D.在解决问题过程中,能进行简单的、有条理的思考。【答案】D35、男,45 岁,因骨盆骨折住院。X 线检查发现多部位溶骨性病变。实验室检查:骨髓浆细胞占 25%,血沉 50mm/h,血红蛋白为 80g/L,尿本周蛋白阳性,血清蛋白电泳呈现 M 蛋白,血清免疫球蛋白含量 IgG8g/L、IgA12g/L、IgM0.2g/L。如进一步对
13、该患者进行分型,则应为A.IgG 型B.IgA 型C.IgD 型D.IgE 型E.非分泌型【答案】B36、在讲解“垂线”一课时,教师自制教具,将两根木条钉在一起并固定其中一根木条 a,转动木条 b,让学生观察,从而导入新课。这种导入方式属于()。A.实例导入B.直观导入C.悬念导入D.故事导入【答案】B37、特种蛋白免疫分析仪是基于抗原-抗体反应原理,不溶性免疫复合物可使溶液浊度改变,再通过浊度检测标本中微量物质的分析方法。影响免疫浊度分析的重要因素A.温育系统故障B.伪浊度C.边缘效应D.携带污染E.比色系统故障【答案】B38、新课程标准对于运算能力的基本界定是()。A.正确而迅速的运算B.
14、正确运算C.正确而灵活地运算D.迅速而灵活地运算【答案】B39、辅助性 T 细胞的标志性抗原为A.CD3B.CD3C.CD3D.CD3E.CD3【答案】A40、定量检测病人外周血免疫球蛋白常用的方法是()A.间接血凝试验B.双向琼脂扩散C.单向琼脂扩散D.外斐试验E.ELISA【答案】C41、抛物线 C1:y=x2+1 与抛物线 C2 关于 x 轴对称,则抛物线 C2 的解析式为()。A.y=-x2B.y=-x2+1C.y=x2-1D.y=-x2-1【答案】D42、慢性溶贫时,评价尿中尿胆原下列不正确的是()A.粪中粪胆原增高比尿中尿胆原增高为早B.尿胆原增高同时隐血试验阳性C.受肝脏及消化功
15、能影响D.受肠道菌群及使用抗生素影响E.尿胆原不增高【答案】B43、流式细胞术是一种对单细胞或其他生物粒子膜表面以及内部的化学成分,进行定量分析和分选的检测技术,它可以高速分析上万个细胞,并能从一个细胞中测得多个参数,是目前最先进的细胞定量分析技术。流式细胞仪的主要组成不包括A.液流系统B.光路系统C.抗原抗体系统D.信号测量E.细胞分选【答案】C44、“等差数列”和“等比数列”的概念关系是()A.交叉关系B.同一关系C.属种关系D.矛盾关系【答案】A45、Goodpasture 综合征属于A.型超敏反应B.型超敏反应C.型超敏反应D.型超敏反应E.以上均正确【答案】B46、下列选项中,运算结
16、果一定是无理数的是()A.有理数和无理数的和B.有理数与有理数的差C.无理数和无理数的和D.无理数与无理数的差【答案】A47、先天性无丙球蛋白血症综合征是A.原发性 T 细胞免疫缺陷B.原发性 B 细胞免疫缺陷C.原发性联合免疫缺陷D.原发性吞噬细胞缺陷E.获得性免疫缺陷【答案】B48、临床有出血症状且 APTT 正常和 PT 延长可见于A.痔疮B.F缺乏症C.血友病D.F缺乏症E.DIC【答案】B49、淋巴细胞活力的表示常用A.活细胞占总细胞的百分比B.活细胞浓度C.淋巴细胞浓度D.活细胞与总细胞的比值E.白细胞浓度【答案】A50、“三角形内角和 180”,其判断的形式是().A.全称肯定判
17、断B.全称否定判断C.特称肯定判断D.特称否定判断【答案】A大题(共大题(共 1010 题)题)一、函数单调性是刻画函数变化规律的重要概念,也是函数的一个重要性质。()请叙述函数严格单调递增的定义,并结合函数单调性的定义,说明中学数学课程中函数单调性与哪些内容有关(至少列举出两项内容);(分)()请列举至少两种研究函数单调性的方法,并分别简要说明其特点。(分)【答案】本题主要考查函数单调性的知识,考生对中学课程内容的掌握以及考生的教学设计能力。二、以普通高中课程标准实验教科书数学 1(必修)第一章“集合与函数概念”的设计为例,回答下列问题:(1)从分析集合语言的意义入手,说明为什么把它安排在高
18、中数学的起始章;(6 分)(2)说明高中阶段对函数概念的处理方法;(4 分)(3)给出本章课程的学习目标;(8 分)(4)简要给出集合主要内容的教学设计思路与方法。(12 分)【答案】三、推理一般包括合情推理与演绎推理。()请分别阐述合情推理与演绎推理的含义;(分)()举例说明合情推理与演绎推理在解决数学问题中的作用(分),并阐述两者之间的关系。(分)【答案】本题主要考查合情推理与演绎推理的概念及关系。四、在学习有理数的加法一课时,某位教师对该课进行了深入的研究,做出了合理的教学设计,根据该课内容完成下列任务:(1)本课的教学目标是什么(2)本课的教学重点和难点是什么(3)在情境引入的时候,某
19、位老师通过一道实际生活中遇到的走路问题引出有理数的加法,让学生讨论得出有理数加法的两个数的符号,这样做的意义是什么【答案】(1)教学目标:知识与技能:通过实例,了解有理数的加法的意义,会根据有理数加法法则进行有理数的加法运算。过程与方法:用数形结合的思想方法得出有理数的加法法则,能运用有理数加法解决实际问题。情感态度与价值观:渗透数形结合的思想,培养运用数形结合的方法解决问题的能力,感知数学知识来源于生活,用联系发展的观点看待事物,逐步树立辩证唯物主义观点。(2)教学重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。教学难点:有理数加法中的异号两数进行加法运算。(3)这样做
20、是为了让学生能直观感受到有理数的存在,通过贴近生活现实的实例进行讨论,得出结论会印象深刻,使学生对有理数的知识点掌握更加牢固。五、在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1 弧度的角”的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫作 1 弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。问题:(1)谈谈“弧度制”在高中数学课程中的作用;(8 分)(2)确定“弧度制”的教学目标和教学重难点;(10 分)(3)根据教材,设计一个“
21、弧度制概念”引入的教学片段,引导学生经历从实际背景抽象概念的过程。(12 分)【答案】六、下面是某位老师引入“负数”概念的教学片段。师:我们当地 7 月份的平均气温是零上 28,l 月份的平均气温是零下 3,问 7 月份的平均气温比 1月份的平均气温高几度如何列式计算生:用零上 28减去零下 3,得到的答案是 31。师:答案没错,算式呢生:文字与数字混在一起,一点也不美观。生:零上 28,我们常说成 28,可用 28 表示,但是零下 3不能说成 3呀!也就不能用 3 表示。师:大家的发言很有道理,如何解决这一系列的矛盾呢看样子有必要引入一个新数来表示零下 3c。这时,零下 3就可写成-3,-3
22、就是负数。问题:(1)对该教师情境创设的合理性作出解释;(2)在引入数学概念时,结合上述案例,说说教师创设情境要考虑哪些因素【答案】(1)在这段教学中,教师没有将负数的概念强压给学生,而是设计了计算温度这个情境,让学生自己参与计算活动,发现其中的困惑,从而产生学习新数学概念的意愿。教师只是从中提炼出学生的想法,并进一步上升为数学知识负数。这样,负数概念的提出,成为了学生的自觉行为。学生对负数概念的引入有了较深的思想基础,就会认识到学习负数的必要性,为学好负数奠定了基础。(2)引入数学概念是教学的开始,学生能否掌握好这个概念,与教师引入的艺术是密切联系的。因此,在引人数学概念时,要考虑下面的因素
23、。学习的必要性。引入新概念时,教师应创设一个引入概念的情境,让学生在情境中领会概念产生的必要性。内容的实质性。引入数学概念时,教师所选用的实例要反映概念的本质,不要让太多的无关因素干扰了学生学习的注意力,影响数学概念的形成。数量的适量性。在引入概念时,教师一般要举出一些例子,以便加深学生对概念的初步认识。实例的趣味性。教师在选用例子进行概念教学时,要注意例子的生动有趣,要能引发学生的学习兴趣。教师要尽量结合学生的生活实际或者选择学生非常熟悉与非常感兴趣的问题作为例子。七、在“有理数的加法”一节中,对于有理数加法的运算法则的形成过程,两位教师的一些教学环节分别如下:【教师】第一步:教师直接给出几
24、个有理数加法算式,引导学生根据有理数的分类标准,将加法算式分成六类,即正数与正数相加,正数与负数相加,正数与相加,与相加,负数与相加,负数与负数相加。第二步:教师给出具体情境,分析两个正数相加,两个负数相加,正数与负数相加的情况。第三步:让学生进行模仿练习。第四步:教师将学生模仿练习的题目分成四类:同号相加,一个加数是,互为相反数的两个数相加,异号相加。分析每一类题目的特点,得到有理数加法法则。【教师】第一步:请学生列举一些有理数加法的算式。第二步:要求学生先独立运算,然后小组讨论,再全班交流。对于讨论交流的过程,教师提出具体要求:运算的结果是什么?你是怎么得到结果的?讨论过程中,学生提出利用
25、具体情境来解释运算的合理性第三步:教师提出问题:“不考虑具体情境,基于不同情况分析这些算式的运算,有哪些规律?”分组讨论后再全班交流,归纳得到有理数加法法则。问题:【答案】本题考查考生对基本数学思想方法的掌握及应用。八、数学的产生与发展过程蕴含着丰富的数学文化。(1)以“勾股定理”教学为例,说明在数学教学中如何渗透数学文化。(2)阐述数学文化对学生数学学习的作用。【答案】本题考查数学文化在数学教学过程中的渗透。数学文化包含数学思想、数学思维方式和数学相关历史材料等方面。九、数学的产生与发展过程蕴含着丰富的数学文化。(1)以“勾股定理”教学为例,说明在数学教学中如何渗透数学文化。(2)阐述数学文
26、化对学生数学学习的作用。【答案】本题考查数学文化在数学教学过程中的渗透。数学文化包含数学思想、数学思维方式和数学相关历史材料等方面。一十、下面给出“变量与函数”一节的教学片段:创设情境,导入新课教师:同学们,从小学步入初中到现在的八年级这段时间里,你发生了哪些变化学生:年龄增长了;个子长高了;知识增多了;体重增加了;课教学设计中存在的不足之处,以及在进行知识技能教学时应该坚持的基本原则。【答案】本节课的教学设计对于知识技能教学属于反面案例,主要不足之处有两点:(1)创设情境的目的应该为当节课的教学内容服务,本节课应该指向引入“变量”的概念,教师在引入环节中,只注重了变量的特征之一“变”,却忽视了“在一个变化过程中”这一变量的前提条件,而这一条件对学生进一步理解变量及函数的概念至关重要(2)一个新的数学概念的建立必须经历一个由粗浅到精致,由不完整到严谨的过程,同时要注重引导学生理解其中的关键词的含义,还应通过适当数量的正反例揭示概念的内涵与外延,否则概念的建立是没有联系的,也是不稳定的同时,数学概念的理解应该让学生用自己的语言复述,而不是简单的死记硬背在进行知识技能教学时应该坚持的基本原则有:(1)体现生成性;(2)展现建构性;(3)注重过程性;(4)彰显主体性;(5)突出目标性