数学建模-随机微分方程法.ppt

上传人:wuy****n92 文档编号:73415721 上传时间:2023-02-18 格式:PPT 页数:19 大小:690KB
返回 下载 相关 举报
数学建模-随机微分方程法.ppt_第1页
第1页 / 共19页
数学建模-随机微分方程法.ppt_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《数学建模-随机微分方程法.ppt》由会员分享,可在线阅读,更多相关《数学建模-随机微分方程法.ppt(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、13.13.常见的数学建模方法常见的数学建模方法(8)-(8)-随机微分方程法随机微分方程法 实例:股票价格模型1.股票价格的随机变化过程股票价格的随机变化过程(1)股票价格的马尔科夫性质股票价格的马尔科夫性质 在实际经济生活中,投资者都非常密切地注视着股票市场的变化,总想试图通过各种各样的分析,从股票市场的变化中寻找有用的信息而从中获利.但事但事实实上上,这这是不可能的是不可能的 !因为 假定假定 根据过去一段时间内某种股票价格变化的情况,可以判断可以判断出出 在未来的一段时间内,例如在一个月后,这种股票将从现在价格每股10元上涨到每股15元左右.由于一个成熟的市场上,所有的信息在市场上都能

2、有效地(均匀、同时地)传播,这种股票价格变动的特征立即会被众多的投资者发现,投资者第二天开市就会马上买入这种股票,对这种股票的需求也会立即增加,从而导致这种股票的价格当即上扬,变成了每股20元,结果这种所谓已被“察觉”的一个月后必然获利机会瞬间就会消失.这说明上面的“根据股票价格的历史发展情况可以推断出股票价格的今后发展情况”的 假定假定 是不成立的.股票价格变化的这个性质被称为“股价具有弱市弱市场场有效性有效性”(the weak form of market efficiency).弱市弱市场场有效性有效性 主要是有两点内涵:其一,现在的价格是过去所有信息的完全反映,没有任何信息的作用会持

3、续到以后;其二,对于某种资产的任何新信息,市场会立即作出反映.从数学上来说,这是一种称之为马马尔尔科夫随机科夫随机过过程程 所具有的性质.马马尔尔科夫科夫过过程程 (Markov process)是一种特殊类型的随机过程.这个过程表明只有变量的当前值与未来的预测有关,而变量过去的历史和变量从过去到现在的演变方式与未来的预测不相关.或者说,随机变量过去的取值与今后的取值是相互独立的.因此,在建立股票价格的数学模型时,通常的假设是:股票价格遵循股票价格遵循马马尔尔科夫科夫过过程程.在以下提及的一个的实例中,我们可以看到,这样的假设能经受实践的检验。(2)维纳维纳(Wiener)过程过程 i)基本维

4、纳过程基本维纳过程 在马尔科夫随机过程的数学研究中,有一种特殊的马尔科夫过程,它被称为 基本维纳过程基本维纳过程 (wiener processes).物理学中最早用它来描 绘某个粒子受到大量小分子碰撞的运动,有时它也被称为 布朗运动布朗运动(Brownian motion).如果变量 z 遵循 基本基本维纳过维纳过程程,则 z 必须满足两个基本性质:其中是服从标准正态分布的一个随机变量.当 t 0 时,方程(*)可以写为:.1.(b)对于任何两个不同时间间隔 t,z 的值是相互独立的.从性质(a),我们推得 z 本身具有正态分布,其中:z的均值=z的方差=,z的标准差=.性质(b)则隐含 z

5、 遵循 马马尔尔科夫科夫过过程程 .下面我们考虑在一段相当长的时间 T 中 z 值的变化量,我们将它表示为:z(T)z(0).这可以被看作是在 N 个长度为 t 的小时间间隔中 z 的变化总量.这里 N=T/t.因此,z(T)z(0)=其中 i 服从标准正态分布,且是相互独立的.由此可得 z(T)z(0)是正态分布的,且:z(T)z(0)的均值=z(T)z(0)的方差=N t=T,因此因此,遵循遵循维纳过维纳过程的随机程的随机变变量量,在任意在任意长长度度为为 T 的的时间间时间间隔内的隔内的变变化量服从于均化量服从于均值为值为 0、标标准差准差为为 的正的正态态分布分布.当当 t 0时时,体

6、体现维纳过现维纳过程性程性质质(a)的方程的方程 (*)可以写可以写为为 :.对对于于维纳过维纳过程而言程而言,我我们们常称其随机常称其随机变变量在某个量在某个时时刻的平均刻的平均值为该值为该变变量在量在该时该时刻的刻的“平均漂移平均漂移”,而称在而称在单单位位时间处时间处的平均漂移的平均漂移为该维为该维纳过纳过程的漂移率程的漂移率;同同时还时还称此随机称此随机变变量在量在单单位位时间处时间处的方差的方差值为该值为该维纳过维纳过程的方差率程的方差率.上面上面讨论讨论到的到的维纳过维纳过程程,其漂移率其漂移率应应是是 0,方差方差率率应应是是 1.这这里里,漂移率漂移率为为 0,意味着在未来任何

7、意味着在未来任何时时刻刻,z 的期望的期望值值等于它的当前等于它的当前值值;方差率方差率为为 1,意味着在意味着在长长度度为为 T 的一段的一段时间时间段后段后,z 的的变变化的方差化的方差为为 1T=T.漂移率漂移率为为 0、方差率、方差率为为 1 的的维纳过维纳过程程,我我们们常称之常称之为为 基本基本维纳过维纳过 程程 .生成生成 基本基本维纳过维纳过程程 的的 Mathematica 软软件程序可以写件程序可以写为为:1.ii)一般化维纳过程一般化维纳过程(generalized wiener process)在基本维纳过程的基础上,还可以定义一个广义类型的维纳过程.dx=a dt+b

8、 dz (#)设随机变量 x 满足以下等式:其中 a 和 b 为常数,变量 z 遵循基本维纳过程,则称变量 x 遵循一般化一般化维纳过维纳过程程.从一般化从一般化维纳过维纳过程的定程的定义义式式(#)可以看出可以看出,adt 项项表明表明 x 是是时间时间 t的的线线性函数性函数,而而 bdz 项项可被看作是添加到可被看作是添加到 x 的的变动轨变动轨迹上的噪声或迹上的噪声或波波动动.换换言之言之,一个一个线线性性变变化化过过程与一个基本程与一个基本维纳维纳(随机随机)过过程的程的叠加叠加结结果便是一个一般化果便是一个一般化维纳维纳(随机随机)过过程程.生成生成 一般化一般化维纳过维纳过程程

9、的的 Mathematica 软软件程序可以写件程序可以写为为:随机微分方程随机微分方程(#)也可改写也可改写为为:容易看出,x 的均值=at ,x 的方差=b2t,x 的标准差=类似 i)中的讨论可得:x(T)x(0)的均值=aT ,x(T)x(0)的方差=b2 T ,x(T)x(0)的标准差=由此可以说,遵循一般化遵循一般化维纳过维纳过程的随机程的随机变变量量 x,在任意在任意长长度度为为 T 的的时间间时间间隔内的隔内的变变化量化量 x(T)x(0)服从于均服从于均值为值为 aT,方差方差为为 b2 T 的正的正态态分布分布.(当a=0、b=1时,这个一般化一般化维纳过维纳过程程 即成为

10、 基本基本维纳过维纳过程程)iii)ITO 过程过程 还可以考虑另一种类型更为复杂的马尔科夫随机过程,即著名的 ITO过过程程 (ITO process).如果变量 x=x(t)服从 ITO过过程程,则它的数学定义式为如下的随机微分方程:dx=a(x,t)dt+b(x,t)dz ,其中参数 a 和 b 均是标的变量 x 和时间 t 的函数.(3)股票价格的随机模型股票价格的随机模型在对任何资产(例如股票)进行投资时,投资者所关心的是对资产投资的回报率多大,而不是该资产的绝对增加量多大。例如,有两种股票 A 与 B,假定它们每年每股都平均增加10元,股票 A 的市价为 100元/股,股票 B 的

11、市价为 1000元/股。显然,股票 A 是投资者的最佳选择,因为它的回报率为 10%,而股票B的回报率只有 1%。这这个日投个日投资资回回报报率将遵循什么率将遵循什么样样的随机的随机变变化化过过程?我程?我们们来看一个来看一个实实例。在例。在图图 1 中中显显示了阿根廷示了阿根廷联联合大企合大企业业股票股票 Perez Companc 从从1995 年年 2 月到月到 1996 年年 11月月 的价格走向的价格走向趋势趋势。图图 2 显显示了示了该该股票股票在在这这一段一段时间时间中的日回中的日回报报率随率随时间变时间变化情况。化情况。图图 3 显显示了示了该该股票股票日回日回报报率具体率具体

12、计计算算过过程。程。图图 4 显显示了日回示了日回报报率率经过标经过标准化准化处处理后理后的量的的量的频频率分布率分布图图,其中的函数曲,其中的函数曲线线是是标标准正准正态态分布密度函数。分布密度函数。标标准化准化处处理后的量是指:理后的量是指:)在进行股票投资时,如果记 Si 是第 i 天的股票价格,则投资的日回报率为:根据与标准正态分布密度函数图像的对照,可以说统计数字反映出日回报率近似于正态分布,故我们可以假定:回报率是一个服从于正态分布的随机变量。也就是说:Ri=均值+标准差 ,其中 是一个标准正态分布变量.如果时间步长不是以天计算,而是为 t,则回报率的均值应该与时间步长的大小相关,

13、时间间隔越大,资产偏移平均而言也会越大,我们可以假定:均值=t,其中是一个常数。在一个较长的时间段 T 上,根据数理统计学理论,回报率的样本 标准差为:这里 M=T/t,为各时间点上的样本值,为样本的算术平均值.为了当 t 趋于零时,这个标准差成为有限值,上面表示式中和 式的每一项从无穷小量纲级别上讲,必须是 O(t),而由于每一 项是回报率的平方,所以在小时段 t上,资产回报率的标准差应 该是 O()即可以表示为:标准差=,其中 是一个常数。这样这样就有:就有:,也就是:也就是:或者或者说说,在,在连续连续意意义义下有:下有:这表明股票价格 S=S(t)遵循 ITO过过程程 :dS=S dt

14、+S dz ,其中和均为常数,dz 遵循(基本基本)维纳过维纳过程程.这是一个特殊的 ITO 过过程程,随机变量服从这样的 ITO 过程,也被称为该随机变量服从“几何布朗运几何布朗运动动 ”.2.随机微积分中的随机微积分中的 ITO 引理引理 (1)ITO 引理的内容及其推导引理的内容及其推导任何一种衍生任何一种衍生证证券的价格都是券的价格都是这这些衍生些衍生证证券券标标的的资产这资产这个随机个随机变变量量和和时间时间的函数的函数.如果如果标标的的资产资产随机随机变变量服从量服从 Ito 过过程程,则则它的函数它的函数应应服从什么服从什么样样的随机的随机过过程程?这这方面的重要理方面的重要理论

15、结论结果是一个日本数学家果是一个日本数学家Ito 在在 1952 年所年所发现发现,称称为为 Ito 引理引理.ITO引理引理 假设变量假设变量 x=x(t)遵循遵循 ITO 过程过程:dx=a(x,t)dt+b(x,t)dz,则则函数函数G(x,t)遵循如下的遵循如下的 ITO 过过程程:说说明明:(1)在普通微)在普通微积积分中分中,对对于二元函数于二元函数 G(x,t)的微分的微分 dG 应应有有 将 dx=a dt+bdz 代入应得 但但 Ito 引理指出引理指出,在随机微在随机微积积分中分中,不是不是这这个个结论结论,右端右端应应多一多一项项:.(2)Ito 引理引理还还指出,以指出

16、,以变变量的随机量的随机过过程作程作为为基基础础的的 维纳过维纳过程程 恰好与以恰好与以变变量的函数的随机量的函数的随机过过程作程作为为基基础础的的维纳过维纳过程完全相同,程完全相同,两者都受同两者都受同样样的不确定性因素的影响。的不确定性因素的影响。这这在金融衍生在金融衍生产产品的定品的定价价过过程中具有非常重要的意程中具有非常重要的意义义。证明证明:根据二元函数的泰勒展开式根据二元函数的泰勒展开式,有有:因因为为 故故 所以所以 这这里里,有性有性质质:它的方差它的方差 因此因此,具有非随机特征性具有非随机特征性质质,并且当并且当 t 趋趋向于零向于零时时,可以用它的期望可以用它的期望值值

17、 替代替代.它的期望它的期望 于是当于是当 t 趋趋向于零向于零时时,就有就有:(2)股票价格的对数正态分布特性股票价格的对数正态分布特性 利用 ITO 引理引理 立即可推导出股票价格的对数值所应遵循的随机过程为:从而从而这是因为如考虑 S 的函数 G(S,t)=lnS,这里,股票价格 S 遵循几何布朗运动(ITO过过程程):dS=S dt+S dz ,其中和均为常数,dz 遵循(基本基本)维纳过维纳过程程.根据 ITO 引理引理 ,由于 所以 这个方程表明,G(S,t)=lnS 遵循一个一般化维纳过程,它的漂移率为 方差率为 根据上面对于一般化维纳过程的探讨可知,在当前时刻 t 和将来某一时

18、刻 T 之间 G(S,t)=lnS 的变化量 lnST-lnS 是正态分布的,它 的均值为:方差为:因此,也就是:.换换言之言之,股票价格服从于股票价格服从于对对数正数正态态分布分布.例例.某一种股票,初始价格为 40 元,预期收益率为每年 16%,波动率 为每年 20%.问:(1)六个月后,股票价格在什么范围内变动(95%的可能性)?(2)投资股票效益高于现金存入银行效益的可能性有多大?(假定银行半年期的储蓄利率为0.02)解解.(1)由股票价格服从于对数正态分布规律知,六个月后股票价格 ST 的概率分布为:正态分布变量取值位于均值左右两个标准差范围内的概率为 95%,因此,置信度为 95%时,3.759-20.1413.477 ln ST 4.041=3.759+20.141,即即 32.36=e 3.477 ST e 4.041 =56.88.故六个月后股票价格故六个月后股票价格应应落在落在 32.36 和和 56.88 之之间间(95%的概率的概率).(2)40 元现金存入银行,六个月后可得本利 40.8 元。40 元现金购买股票,六个月后股价低于 40.8 元的可能性 即为 lnST ln40.8 的可能性,为:由此,六个月后投资股票效益高于现金存银行效益的可能性为:1-0.36=0.64=64%.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁