陕西省2023年教师资格之中学数学学科知识与教学能力题库练习试卷B卷附答案.doc

上传人:豆**** 文档编号:73408800 上传时间:2023-02-18 格式:DOC 页数:21 大小:30.50KB
返回 下载 相关 举报
陕西省2023年教师资格之中学数学学科知识与教学能力题库练习试卷B卷附答案.doc_第1页
第1页 / 共21页
陕西省2023年教师资格之中学数学学科知识与教学能力题库练习试卷B卷附答案.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《陕西省2023年教师资格之中学数学学科知识与教学能力题库练习试卷B卷附答案.doc》由会员分享,可在线阅读,更多相关《陕西省2023年教师资格之中学数学学科知识与教学能力题库练习试卷B卷附答案.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、陕西省陕西省 20232023 年教师资格之中学数学学科知识与教学年教师资格之中学数学学科知识与教学能力题库练习试卷能力题库练习试卷 B B 卷附答案卷附答案单选题(共单选题(共 5050 题)题)1、男性,30 岁,常伴机会性感染,发热、咳嗽、身体消瘦,且查明患有卡氏肺孢子菌肺炎,初步怀疑为艾滋病,且 HIV 筛查试验为阳性结果。若该患者进行 T 细胞亚群测定,最可能出现的结果为A.CD4B.CD4C.CD8D.CD8E.CD4【答案】A2、关于慢性白血病的叙述,错误的是A.以慢粒多见B.大多由急性转化而来C.慢性患者有半数以上可急性变D.慢性急性变用药物化疗无效E.慢性急性变患者大多预后不

2、好【答案】B3、以下哪些不属于学段目标中情感与态度方面的。()A.感受数学思考过程的合理性。B.感受数学思考过程的条理性和数学结论的确定性。C.获得成功的体验,有学好数学的信心。D.在解决问题过程中,能进行简单的、有条理的思考。【答案】D4、单核巨噬细胞的典型的表面标志是A.CD2B.CD3C.CD14D.CD16E.CD28【答案】C5、创立解析几何的主要数学家是().A.笛卡尔,费马B.笛卡尔,拉格朗日C.莱布尼茨,牛顿D.柯西,牛顿【答案】A6、应用于 C3 旁路检测A.CPi-CH50B.AP-CH50C.补体结合试验D.甘露聚糖结合凝集素E.B 因子【答案】B7、最早使用“函数”(f

3、unction)这一术语的数学家是()。A.约翰贝努利B.莱布尼茨C.雅各布贝努利D.欧拉【答案】B8、有限小数与无限不循环小数的关系是()。A.对立关系B.从属关系C.交叉关系D.矛盾关系【答案】A9、男性,29 岁,发热半个月。体检:两侧颈部淋巴结肿大(约 3cm4cm),肝肋下 2cm,脾肋下 25cm,胸骨压痛,CT 显示后腹膜淋巴结肿大。检验:血红蛋白量 85gL,白细胞数 3510A.骨髓活检B.淋巴结活检C.淋巴细胞亚群分型D.骨髓常规检查E.NAP 染色【答案】B10、已知随机变量 X 服从正态分布 X(,2),假设随机变量 Y=2X-3,Y 服从的分布是()A.N(2-3,2

4、2-3)B.N(2-3,42)C.N(2-3,42+9)D.N(2-3,42-9)【答案】B11、原位溶血的场所主要发生在A.肝脏B.脾脏C.骨髓D.血管内E.卵黄囊【答案】C12、下列关于高中数学课程变化的内容,说法不正确的是()。A.高中数学课程中的向量既是几何的研究对象,也是代数的研究对象B.高中数学课程中,概率的学习重点是如何计数C.算法是培养逻辑推理能力的非常好的载体D.集合论是一个重要的数学分支【答案】B13、临床有出血症状且 APTT 和 PT 均正常可见于A.痔疮B.F缺乏症C.血友病D.F缺乏症E.DIC【答案】D14、实验室常用的补体灭活方法是A.45,30minB.52,

5、30minC.56,30minD.50,25minE.37,25min【答案】C15、下列数学成就是中国著名成就的是()。A.B.C.D.【答案】C16、下列数学概念中,用“属概念加和差”方式定义的是()。A.正方形B.平行四边形C.有理数D.集合【答案】B17、出血时间测定狄克法正常参考范围是()A.26 分钟B.12 分钟C.27 分钟D.13 分钟E.24 分钟【答案】D18、骨髓涂片中见异常幼稚细胞占 40%,这些细胞的化学染色结果分别是:POX(-),SB(-),AS-D-NCE(-),-NBE(+),且不被 NaF 抑制,下列最佳选择是A.急性单核细胞性白血病B.组织细胞性白血病C

6、.急性粒细胞性白血病D.急性早幼粒白血病E.粒-单细胞性白血病【答案】B19、最常引起肝、脾、淋巴结肿大及脑膜白血病的是A.急性粒细胞白血病B.慢性淋巴细胞白血病C.急性粒-单核细胞白血病D.急性淋巴细胞白血病E.慢性粒细胞白血病【答案】D20、患者,男,28 岁,患尿毒症晚期,拟接受肾移植手术。兄弟间器官移植引起排斥反应的物质是A.异种抗原B.自身抗原C.异嗜性抗原D.同种异体抗原E.超抗原【答案】D21、下列说法中不正确的是()。A.教学活动是教师单方面的活动,教师是学习的领导者B.评价既要关注学生学习的结果、也要重视学习的过程C.为了适应时代发展对人才培养的需要,新课程标准指出:义务教育

7、阶段的数学教育要特别注重发展学生的应用意识和创新意识D.总体目标是义务教育阶段数学课程的终极目标,而学段目标则是总体目标的细化和学段化【答案】A22、下列选项中,运算结果一定是无理数的是()。A.有理数与无理数的和B.有理数与有理数的差C.无理数与无理数的和D.无理数与无理数的差【答案】A23、结肠癌的标志A.AFPB.CEAC.PSAD.CA125E.CA15-3【答案】B24、普通高中数学课程标准(实验)中规定的必修课程是每个学生都必须学习的数学内容,下列内容不属于必修 4 的是()A.算法初步B.基本初等函数(三角函数)C.平面上的向量D.三角恒等变换【答案】A25、学记中提出“道而弗牵

8、,强而弗抑,开而弗达”。这体现了下列哪项教学原则?()A.启发式原则B.因材施教原则C.循序渐进原则D.巩固性原则【答案】A26、日本学者 Tonegawa 最初证明 BCR 在形成过程中()A.体细胞突变B.N-插入C.重链和轻链随机重组D.可变区基因片段随机重排E.类别转换【答案】D27、下列语句是命题的是()。A.B.C.D.【答案】D28、与意大利传教士利玛窦共同翻译了几何原本(卷)的我国数学家是()。A.徐光启B.刘徽C.祖冲之D.杨辉【答案】A29、下列对向量学习意义的描述:A.1 条B.2 条C.3 条D.4 条【答案】D30、免疫标记电镜技术获得成功的关键是A.对细胞超微结构完

9、好保存B.保持被检细胞或其亚细胞结构的抗原性不受损失C.选择的免疫试剂能顺利穿透组织细胞结构与抗原结合D.以上叙述都正确E.以上都不对【答案】D31、AT-抗原测定多采用A.凝固法B.透射免疫比浊法和散射免疫比浊法C.免疫学法D.发色底物法E.以上都是【答案】C32、函数 f(x)在a,b上黎曼可积的必要条件是 f(x)在a,b上()。A.可微B.连续C.不连续点个数有限D.有界【答案】D33、变性 IgG 刺激机体产生类风湿因子A.隐蔽抗原的释放B.自身成分改变C.与抗体特异结合D.共同抗原引发的交叉反应E.淋巴细胞异常增殖【答案】B34、下列关于椭圆的叙述:平面内到两个定点的距离之和等于常

10、数的动点轨迹是椭圆;平面内到定直线和直线外的定点距离之比为大于 1 的常数的动点轨迹是椭圆;从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆的另一个焦点;平面与圆柱面的截面是椭圆。正确的个数是()A.0B.1C.2D.3【答案】C35、内源凝血途径的始动因子是下列哪一个A.B.C.因子D.E.【答案】D36、柯萨奇病毒感染引起糖尿病A.隐蔽抗原的释放B.自身成分改变C.与抗体特异结合D.共同抗原引发的交叉反应E.淋巴细胞异常增殖【答案】D37、弥散性血管内凝血常发生于下列疾病,其中哪项不正确A.败血症B.肌肉血肿C.大面积烧伤D.重症肝炎E.羊水栓塞【答案】B38、下列命题不正确的是()A.有

11、理数集对于乘法运算封闭B.有理数可以比较大小C.有理数集是实数集的子集D.有理数集是有界集【答案】D39、临床检测血清,尿和脑脊液中蛋白质含量的常用仪器设计原理是A.化学发光免疫测定原理B.电化学发光免疫测定原理C.酶免疫测定原理D.免疫浊度测定原理E.免疫荧光测定原理【答案】D40、函数 f(x)在a,b上黎曼可积的必要条件是 f(x)在a,b上()。A.可微B.连续C.不连续点个数有限D.有界【答案】D41、抗凝血酶活性测定多采用A.凝固法B.透射免疫比浊法和散射免疫比浊法C.免疫学法D.发色底物法E.以上都是【答案】D42、实验室常用的补体灭活方法是A.45,30minB.52,30mi

12、nC.56,30minD.50,25minE.37,25min【答案】C43、甲乙两位棋手通过五局三胜制比赛争夺 1000 员奖金,前三局比赛结果为甲二胜一负,现因故停止比赛,设在每局比赛中,甲乙获胜的概率都是 1/2,如果按照甲乙最终获胜的概率大小分配奖金,甲应得奖金为()A.500 元B.600 元C.666 元D.750 元【答案】D44、最常引起肝、脾、淋巴结肿大及脑膜白血病的是A.急性粒细胞白血病B.慢性淋巴细胞白血病C.急性粒-单核细胞白血病D.急性淋巴细胞白血病E.慢性粒细胞白血病【答案】D45、下列关于椭圆的论述,正确的是()。A.平面内到两个定点的距离之和等于常数的动点轨迹是

13、椭圆B.平面内到定点和定直线距离之比小于 1 的动点轨迹是椭圆C.从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆另一个焦点D.平面与圆柱面的截线是椭圆【答案】C46、“矩形”和“菱形”的概念关系是哪个()。A.同一关系B.交叉关系C.属种关系D.矛盾关系【答案】B47、红细胞镰状变形试验用于诊断下列哪种疾病A.HbFB.HbSC.HbHD.HbE.HbBArts【答案】B48、下列关于椭圆的论述,正确的是()。A.平面内到两个定点的距离之和等于常数的动点轨迹是椭圆B.平面内到定点和定直线距离之比小于 1 的动点轨迹是椭圆C.从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆另一个焦点D.平面与

14、圆柱面的截线是椭圆【答案】C49、九章算数注的作者是()。A.刘徽B.秦九韶C.杨辉D.赵爽【答案】A50、下列描述为演绎推理的是()。A.从一般到特殊的推理B.从特殊到一般的推理C.通过实验验证结论的推理D.通过观察猜想得到结论的推理【答案】A大题(共大题(共 1010 题)题)一、案例:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群里,要数腿共 48,要数脑袋整 l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为 17 只,总的腿数应为 34 条,但现在有 48 条腿,造成腿的数目不够是由于小兔的数目是 O,每有一只小兔便会增加两条腿,敌应有(48172)2=7

15、只小兔。相应地,小鸡有 10 只。解法二:用代数方法:可设有 x 只小鸡,y 只小兔,则 x+y=17;2x+4y=48。将第一个方程的两边同乘以-2 加到第二个方程中去,得 x+y=17;(4-2)y=48-17x2。解上述第二个方程得 y=7,把 y=7 代入第一个方程得 x=10。所以有 10 只小鸡7 只小兔。问题:(1)试说明这两种解法所体现的算法思想;(10 分)(2)试说明这两种算法的共同点。(10 分)【答案】(1)解法一所体现的算法是:S1 假设没有小兔则小鸡应为 n 只;S2计算总腿数为 2n 只;S3 计算实际总腿数 m 与假设总腿数 2n 的差值 m-2n;S4计算小兔

16、只数为(m-2n)2;S5 小鸡的只数为 n-(m-2n)2;解法二所体现的算法是:S1 设未知数 S2 根据题意列方程组;S3 解方程组:S4 还原实际问题,得到实际问题的答案。(2)不论在哪一种算法中,它们都是经有限次步骤完成的,因而它们体现了算法的有穷性。在算法中,第一步都能明确地执行,且有确定的结果,因此具有确定性。在所有算法中,每一步操作都是可以执行的,也就是具有可行性。算法解决的都是一类问题,因此具有普适性。二、下面是某位老师引入“负数”概念的教学片段。师:我们当地 7 月份的平均气温是零上 28,l 月份的平均气温是零下 3,问 7 月份的平均气温比 1月份的平均气温高几度如何列

17、式计算生:用零上 28减去零下 3,得到的答案是 31。师:答案没错,算式呢生:文字与数字混在一起,一点也不美观。生:零上 28,我们常说成 28,可用 28 表示,但是零下 3不能说成 3呀!也就不能用 3 表示。师:大家的发言很有道理,如何解决这一系列的矛盾呢看样子有必要引入一个新数来表示零下 3c。这时,零下 3就可写成-3,-3就是负数。问题:(1)对该教师情境创设的合理性作出解释;(2)在引入数学概念时,结合上述案例,说说教师创设情境要考虑哪些因素【答案】(1)在这段教学中,教师没有将负数的概念强压给学生,而是设计了计算温度这个情境,让学生自己参与计算活动,发现其中的困惑,从而产生学

18、习新数学概念的意愿。教师只是从中提炼出学生的想法,并进一步上升为数学知识负数。这样,负数概念的提出,成为了学生的自觉行为。学生对负数概念的引入有了较深的思想基础,就会认识到学习负数的必要性,为学好负数奠定了基础。(2)引入数学概念是教学的开始,学生能否掌握好这个概念,与教师引入的艺术是密切联系的。因此,在引人数学概念时,要考虑下面的因素。学习的必要性。引入新概念时,教师应创设一个引入概念的情境,让学生在情境中领会概念产生的必要性。内容的实质性。引入数学概念时,教师所选用的实例要反映概念的本质,不要让太多的无关因素干扰了学生学习的注意力,影响数学概念的形成。数量的适量性。在引入概念时,教师一般要

19、举出一些例子,以便加深学生对概念的初步认识。实例的趣味性。教师在选用例子进行概念教学时,要注意例子的生动有趣,要能引发学生的学习兴趣。教师要尽量结合学生的生活实际或者选择学生非常熟悉与非常感兴趣的问题作为例子。三、函数单调性是刻画函数变化规律的重要概念,也是函数的一个重要性质。()请叙述函数严格单调递增的定义,并结合函数单调性的定义,说明中学数学课程中函数单调性与哪些内容有关(至少列举出两项内容);(分)()请列举至少两种研究函数单调性的方法,并分别简要说明其特点。(分)【答案】本题主要考查函数单调性的知识,考生对中学课程内容的掌握以及考生的教学设计能力。四、数学的产生与发展过程蕴含着丰富的数

20、学文化。(1)以“勾股定理”教学为例,说明在数学教学中如何渗透数学文化。(2)阐述数学文化对学生数学学习的作用。【答案】本题考查数学文化在数学教学过程中的渗透。数学文化包含数学思想、数学思维方式和数学相关历史材料等方面。五、义务教育教学课程标准(2011 年版)关于平行四边形的性质的教学要求是:探索并证明平行四边形的性质定理平行四边形的对边以及对角相等,请基于该要求,完成下列教学设计任务:(1)设计平行四边形性质的教学目标;(6 分)(2)设计两种让学生发现平行四边形性质的教学流程;(12分)(3)设计平行四边形性质证明的教学流程,使学生领悟证明过程中的教学思想方法。(12 分)【答案】本题主

21、要以初中数学教学中的重要内容之一“平行四边形的性质定理”为例,平行四边形的性质定理的基础知识,初中数学课程内容、课程标准及实施建议,教学过程的基本要素及教学方法的选择,教学设计中的教学目标、教学过程及教学策略等相关知识,比较综合性地考查学科知识、课程知识、教学知识以及教学技能的基本知识和基本技能。(1)新课标倡导三维教学目标,知识与技能目标、过程与方法目标、情感态度与价值观目标。知识与技能目标,是对学生学习结果的描述,即学生同学习所要达到的结果,又叫结果性目标。这种目标一般有三个层次的要求:学懂、学会、能应用。过程与方法目标,是学生在教师的指导下,如何获取知识和技能的程序和具体做法,是过程中的

22、目标,又叫程序性目标。这种目标强调三个过程:做中学、学中做、反思。情感态度与价值观目标,是学生对过程或结果的体验后的倾向和感受,是对学习过程和结果的主观经验,又叫体验性目标。它的层次有认同、体会、内化三个层次。知识与技能目标是过程与方法目标、情感态度与价值观目标的基础;过程与方法目标是实现知识与技能目标的载体,情感态度与价值观目标对其他目标有重要的促进和优化作用。(2)让学生发现平行四边形性质的教学流程,可以从不同角度进行设计,如“观察猜想验证归纳”,“动手操作小组讨论归纳总结”等,但重要的是让学生在学习过程中进行主动学习,教师只是起到引导的作用,充分体现“学生是主体,教师是主导”的教学理念。

23、(3)平行四边形关于边、角的性质定理,即平行四边形的对边以及对角相等,这一定理的证明是通过证明三角形全等来证明对边、对角相等来进行的。注意在平行四边形性质证明的教学流程中,务必使学生领悟证明过程中所用到的转化思想与方法。六、下列是三位教师对“等比数列概念”引入的教学片段。【教师甲】用实例引入,选了一个增长率的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,8,16,1,-1,1,-1,1,-4,

24、2,-1,1,1,l,1,1,由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你能类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。【答案】七、下面给出“变量与函数”一节的教学片段:创设情境,导入新课教师:同学们,从小学步入初中到现在的八年级这段时间里,你发生了哪些变化

25、学生:年龄增长了;个子长高了;知识增多了;体重增加了;课教学设计中存在的不足之处,以及在进行知识技能教学时应该坚持的基本原则。【答案】本节课的教学设计对于知识技能教学属于反面案例,主要不足之处有两点:(1)创设情境的目的应该为当节课的教学内容服务,本节课应该指向引入“变量”的概念,教师在引入环节中,只注重了变量的特征之一“变”,却忽视了“在一个变化过程中”这一变量的前提条件,而这一条件对学生进一步理解变量及函数的概念至关重要(2)一个新的数学概念的建立必须经历一个由粗浅到精致,由不完整到严谨的过程,同时要注重引导学生理解其中的关键词的含义,还应通过适当数量的正反例揭示概念的内涵与外延,否则概念

26、的建立是没有联系的,也是不稳定的同时,数学概念的理解应该让学生用自己的语言复述,而不是简单的死记硬背在进行知识技能教学时应该坚持的基本原则有:(1)体现生成性;(2)展现建构性;(3)注重过程性;(4)彰显主体性;(5)突出目标性八、推理一般包括合情推理与演绎推理。()请分别阐述合情推理与演绎推理的含义;(分)()举例说明合情推理与演绎推理在解决数学问题中的作用(分),并阐述两者之间的关系。(分)【答案】本题主要考查合情推理与演绎推理的概念及关系。九、在学习有理数的加法一课时,某位教师对该课进行了深入的研究,做出了合理的教学设计,根据该课内容完成下列任务:(1)本课的教学目标是什么(2)本课的

27、教学重点和难点是什么(3)在情境引入的时候,某位老师通过一道实际生活中遇到的走路问题引出有理数的加法,让学生讨论得出有理数加法的两个数的符号,这样做的意义是什么【答案】(1)教学目标:知识与技能:通过实例,了解有理数的加法的意义,会根据有理数加法法则进行有理数的加法运算。过程与方法:用数形结合的思想方法得出有理数的加法法则,能运用有理数加法解决实际问题。情感态度与价值观:渗透数形结合的思想,培养运用数形结合的方法解决问题的能力,感知数学知识来源于生活,用联系发展的观点看待事物,逐步树立辩证唯物主义观点。(2)教学重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。教学难点:有理数加法中的异号两数进行加法运算。(3)这样做是为了让学生能直观感受到有理数的存在,通过贴近生活现实的实例进行讨论,得出结论会印象深刻,使学生对有理数的知识点掌握更加牢固。一十、推理一般包括合情推理与演绎推理。()请分别阐述合情推理与演绎推理的含义;(分)()举例说明合情推理与演绎推理在解决数学问题中的作用(分),并阐述两者之间的关系。(分)【答案】本题主要考查合情推理与演绎推理的概念及关系。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 语文专题

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁