《椰壳炭用于电容去离子技术的研究,硕士论文.docx》由会员分享,可在线阅读,更多相关《椰壳炭用于电容去离子技术的研究,硕士论文.docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、椰壳炭用于电容去离子技术的研究,硕士论文淡水资源是人类赖以生存的基本物质.但是由于生活工业污水的排放,环境污染日益严重,淡水资源急剧短缺.所以解决可利用水资源的问题至关重要.众所周知,海水资源占据地球上水资源的绝大部分,但是由于海水中含有大量的氯化钠、氯化镁等盐类,并不能被直接利用,需要对其进行淡化后才能使用.华而不实,电容去离子技术(CDI)由于其具有淡化效果好、成本低和综合效益好的特点被广泛关注.电极是电容去离子中的核心部分,它的性能极大的影响了淡化性能.在选择电极材料时,为保证淡化能力,应选用来源广泛,成本较低的材料.本论文中选用了椰壳和钠锰氧化物作为原材料制备电极. 论文将椰壳通过马弗
2、炉煅烧和化学处理后得到了椰壳炭,并将椰壳炭与其他材料一起辊压成片电极.将制备成的电极以CDI模块测试系统对其脱盐性能进行测试研究.溶液的电导率随时间变化,讲明CDI模块能够成功的将待测溶液中的盐去除和脱附.在不同盐溶液流速情况下,溶液电导率首先下降较快,接着逐步趋于平缓.电导率随着溶液流速的增加下降较快,CDI效果逐步变好,但是继续增加溶液的流速至35r时,CDI效果变差.综合能耗与效益最大化,30r(10mL/min)的流速为最优选择.在不同操作电压下,操作电压越大,溶液中电导值下降幅度大.所研究的电压中电压为1V时吸附效果最好,电导率最低降至950 S/cm.将充放电仪反接后,脱附后得到的
3、溶液最大电导值与最初始的溶液电导值基本一致,这表示清楚所制备的椰壳炭材料电极同时也具备有良好的脱附性能.在处理不同盐溶液时,对不同离子电荷量和离子半径的吸附情况不同.不同离子吸附规律为电荷高吸附量大,所带电荷一致时,半径小吸附量较高. 论文使用钠锰氧化物(NMO)作为原材料,采用固相反响来合成制备了Na4Mn9O18,与其他材料混合均匀后辊压机压延成片型电极.以同样的方式方法制备了活性炭(Activcatedcarbon)电极.将NMO电极和AC电极组装成非对称系统.使用循环伏安法对NMO电极和AC电极测试,两种电极在水溶液中表现出优良的稳定性和高容量.同时对 NMO/AC 非对称系统除盐效果
4、进行测试.最大的离 子移除速率能够到达 0.066 mg(NaCl)/g/s.与 CDI 系统(0.048 mg/g/s)使用对称 活性炭电极所得出的结果相比,性能较好.在处理较高浓度的盐溶液时也具备较 好的处理效果.Na4Mn9O18 具有较大的充电容量(40 mA h/g50 mA h/g),并 且该值超过 300 F/g,比 AC 材料有更高层次的电容.同时在循环期间,充/放电容量 显示出极好的稳定性,300 圈循环后库仑效率接近 100%.讲明 NMO/AC 非对称 系统具有良好的电化学性能,同时在氯化钠水溶液中可屡次循环使用. 本文关键词语:电容去离子,电极,海水淡化,离子 Abst
5、ract Fresh water is the basic material for human survival. However, due to the discharge of industrial sewage, the environmental pollution is becoming more and more serious, and the fresh water resources are in short supply. So it is very important to solve the problem of using water resources. As w
6、e all know, sea water resources occupy the vast majority of water resources on the earth. However, because seawater contains a large number of salts such as sodium chloride and magnesium chloride, it can not be directly used, so it needs to be desalinated before it can be used. Among them, capacitiv
7、e deionized Technology (CDI) has been widely concerned because of its advantages of good desalination, low cost and good comprehensive benefits. The electrode is core part of the capacitive deionization, and its performance greatly affects the desalination performance. While selecting electrode mate
8、rials to ensure desalination, a wide range of materials with low cost should be selected. In this paper, coconut shells and sodium manganese oxides are selected asthe raw materialsfor the preparation of the electrode. The coconut shell was treated by muffle furnace and chemical procedures and coconu
9、t shell activated carbon was obtained. The coconut shell charcoal together with other materials were roled into electrode pieces. The desalting performance of the prepared electrode was tested by the CDI module test system. The electrical conductivity of the solution varies with time, indicating tha
10、t the CDI module can successfully remove and deactivate the salt in the solution. At the flow rate of different salt solutions, the conductivity of the solution first descends faster and then gradually tends to slow. With the increase of the flow velocity of the solution, the effect of CDI gradually
11、 becomes better, but the effect of CDI becomes worse when the flow rate of the solution increases to 35 r. The maximum energy consumption and efficiency are maximized, and the flow velocity of 30 r (10 mL/min) is the best choice. Under the different operating voltages, the greater the operating volt
12、age, the decrease of the conductivity in the solution. When the voltage in the voltage is 1V, the adsorption effect is the best and the conductivity is lower to 950 S/cm. The charging and discharging device will reverse, the maximum conductivity solution desorption values obtained with the initial c
13、onductivity values are consistent, which indicate that the coconut shell carbon electrode preparation also has good desorption performance. The adsorption of different ionic charge and ion radius is different when different salt solutions are treated. The adsorption of different ions is high in the
14、high charge of charge. When the charge is consistent, the small adsorption capacity is higher. Using sodium manganese oxide (NMO) as raw material, solid phase reaction is used to synthesize Na4Mn9O18, mixed with other materials, roll press is rolled into sheet type electrode. The AC electrode was pr
15、epared by the same method. The NMO electrode and the AC electrode were assembled into asymmetric systems. NMO electrode and AC electrode were tested by cyclic voltammetry. The two electrodes showed excellent stability and high capacity in aqueous solution. At the same time, the desalting effect of N
16、MO/AC asymmetric system was tested. The maximum removal rate of ion can reach 0.066 mg (NaCl)/g/s. Compared with the results obtained from the CDI system (0.048 mg/g/s) using a symmetrical activated carbon electrode, the performance is better. It also has good treatment effect when treating high con
17、centration of salt solution. Na4Mn9O18 has a larger charging capacity (40 mA h/g - 50 mA h/g), and the value is over 300 F/g, and has a higher capacitance than the AC material. At the same time, the charge/discharge capacity shows excellent stability during the cycle, and the coulomb efficiency is c
18、lose to 100% after 300 cycles. This indicates that the electrochemical performance of the NMO/AC asymmetric system is stable and can be used repeatedly in the sodium chloride solution. Key word: Capacitive; deionization; electrode; sea water; desalination ion 目 录 幅较长,部分内容省略,具体全文见文末附件 第5章结论与瞻望 5.1结论
19、1.椰壳炭电极在不同盐溶液流速下,溶液电导率首先下降较快,接着逐步趋于平缓.电导率随着溶液流速的增加下降较快,但是继续增加流速至35r时,CDI效果变差.30r(10mL/min)的流速为最优. 2.电极在测试电压为1V时吸附效果最好,电导率最低降至950 S/cm.电极对高电荷、半径小的离子吸附量大. 3.NMO/AC非对称系统最大除盐率可到达0.066mg(NaCl)/g/s. 4.Na4Mn9O18具有较大的充电容量(40mAh/g50mAh/g),NMO/AC非对称系统300圈循环后库仑效率接近100%,电化学性能稳定. 5.2瞻望 综上所述,我们以为CDI是一个具有挑战性和令人兴奋的
20、领域,即便经过50年的发展,仍然能够被以为是一个新兴的技术.在了解CDI工艺方面仍然存在很多挑战,继续寻找新型电极材料作为提升CDI系统性能的解决方案. 以下为参考文献 1 王瑗, 盛连喜, 李科, 等. 中国水资源现在状况分析与可持续发展对策研究J. 水 资源与水工程学报,2008, 50(3): 10-14. 2 Abdel-Aal E A, Farid M E, Hassan F S M, et al. Desalination of Red Sea water using both electrodialysis and reverse osmosis as complementary
21、 methodsJ. Egyptian Journal of Petroleum, 2021, 24(1): 71-75. 3 Johnson A M, Venolia A W, Wilbourne R G, et al. The electrosorb process for desaltingwaterJ. Washington: U.S. Dept. of the Interior, 1970, 17(3): 56-58. 4 Johnson A M, Newman J. Desalting by means of porous carbon electrodesJ. Electroch
22、em Soc, 1971, 118(5): 7-10. 5 Liu Y S, Chuan-Jun W U. Situation of land-water resources and analysis of sustainable food security in ChinaJ. Journal of Natural Resources, 2002, 19(3): 154-156. 6 Opricovic S. A compromise solution in water resources planningJ. Water Resources Management, 2018, 23(8):
23、 1549-1561. 7 Blair J W. Murphy G W. Mathematical theory of electrochemical demineraliza- tion in flowing systemsJ. Electrochim Acta, 1967, 12(16): 55-64. 8 Murphy GW, Caudle DD. Mathematical theory of electrochemical demineralization in flowing systemsJ. Electrochim Acta, 1967, 12(16): 55-64. 9 王浩歌
24、, 王小娟. 电渗析海水淡化技术研究进展J. 广东化工, 2021, 44(20): 138-140. 10 Blair JW, Murphy GW. Electrochemical demineralization of water with porous electrodes of large surface areaJ. Saline water conversion. American Chemical Society, 1960, 20(6): 23. 11 Ophir A. Low temperature, multi-effect distillation for cogener
25、ation yielding the most efficient sea water desalination systemJ. Desalination, 1991, 84(s1-3): 85-101. 12 Murphy GW, Cooper JL, Hunter JA. Activated carbon used as electrodes in electrochemical demineralization of saline waterJ. Washington: U.S. Dept. of the Interior, 1969, 35(17): 125-130. 13 Eziy
26、i I, Krothapalli A, Osorio J D, et al. Effects of salinity and feed temperature on permeate flux of an air gap membrane distillation unit for sea water desalinationC. Technologies for Sustainability. IEEE, 2020, 20(7): 142-145. 14 Kawada I. Development of High Efficiency Sea Water Desalination RO Me
27、mbraneJ. Membrane, 1999, 24(6): 336-341. 15 Evans S, Hamilton W S. The mechanism of demineralization at carbon electrodesJ. J Electrochem Soc, 1966, 11(3): 1314-1319. 16 Anderson M A, Cudero A L, Palma J. Capacitive deionization as an electrochemical means of saving energy and delivering clean water
28、. Comparison to present desalination practices: Will it competeJ. Electrochimica Acta, 2018, 55(12): 3845-3856. 17 Reid G W, Townsend F M, Stevens A M. Filed operation of a 20 gallons per day pilot plant unit for electrochemical desalination of brackish waterJ. Washington: U.S. Dept. of the Interior
29、, 1968, 8(6): 56-58. 18 Hosseini S M, Madaeni S S. The Role of Nanomaterials in Water DesalinationJ. Nanocomposite Electrodialysis Ion-Exchange Membranes, 2021, 56(4): 76. 19 Johnson AM, Newman J. Desalting by means of porous carbon electrodesJ. Electrochem Soc, 1971, 11(8): 510-517. 20 Ioannis C. K
30、aragiannis, Petros G. Soldatos. Water desalination cost literature: review and assessmentJ. Desalination, 2008, 5(7): 77-81. 21 王宏涛, 李保安, 刘兵. 海水淡化技术现在状况及新技术评述J. 盐业与化工, 2020, 43(6): 1-5. 22 李长海, 张雅潇. 海水淡化技术及其应用J. 电力科技与环保, 2018, 27(1): 48-51. 23 Sadrzadeh M, Mohammadi T. Sea water desalination using e
31、lectrodialysisJ. Desalination, 2008, 221(1): 440-447. 24 Manfred L. System for desalination of sea water by electromagnetic sepn, DE19609384P. 1996, 33(5): 15-19. 25 Hong L, Gang W, Wang L, et al. Capacitive deionization (CDI) technology for desalination of sea water:properties of carbon electrode m
32、aterials made of activated carbon and ion-exchange membranesJ. Ciesc Journal, 2020, 63(5): 67-68. 26 Oren Y. Capacitive deionization (CDI) for desalination and water treatment-past, present and future (a review)J. Desalination, 2008, 228(1): 10-29. 27 Yoon S W. Removal of Inorganic Ions from Ground
33、Water by Capacitive DeionizationJ. 2008, 213(7): 10-13. 28 Yoshinobu Tanaka, Reo Ehara, Sigeru Itoi, et al. Ion-exchange membrane electrodialytic salt production using brine discharged from a reverse osmosis seawater desalination plantJ. Journal of Membrane Science , 2003, 6(1): 55-57. 29 Zhang C, H
34、e D, Ma J, et al. Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A reviewJ. Water Research, 2021, 12(8): 314. 30 Toraj Mohammadi, Anita Kaviani. Water shortage and seawater desalination by electrodialysisJ. Desalination, 2003, 7(1): 46-49. 31 Nagel H W. DISTILLATIO
35、N DESALINATION OF SEA WATER USING HEATED METAL BALLS TO VAPORIZE WATER: US, US3459638P. 1969, 76(4): 131-138. 32 .Thamilselvan A, Nesaraj A S, Noel M. Review on carbon-based electrode materials for application in capacitive deionization processJ. International Journal of Environmental Science Techno
36、logy, 2021, 13(12): 2961-2976. 33 高从堦, 周勇, 刘立芬. 反浸透海水淡化技术现在状况和瞻望J. 海洋技术学报, 2021, 35(1): 1-14. 34 H?rtel A, Janssen M, Samin S, et al. Fundamental measure theory for the electric double layer: implications for blue-energy harvesting and water desalinationJ. Journal of Physics Condensed Matter An Inst
37、itute of Physics Journal, 2021, 27(19): 129-139. 35 Ma J, Du M. Multistage Flashing (MSF) System for Sea Water Desalination and Development of Domestic DeviceJ. Hebei Electric Power, 1998, 55(12): 5-7. 36 Liu D, Huang K, Xie L, et al. Relation between operating parameters and desalination performanc
38、e of capacitive deionization with activated carbon electrodesJ. Environmental Science Water Research Technology, 2021, 1(4): 516-522. 37 Kim T, Dykstra J E, Porada S, et al. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltageJ. Journal of
39、Colloid Interface Science, 2021, 4(46): 317-326. 38 Porada S, Bryjak M, Wal A V D, et al. Effect of electrode thickness variation on operation of capacitive deionizationJ. Electrochimica Acta, 2020, 2(24): 9313-9321. 39 Taeyoung Kim, Hyun Deog Yoo, et al. Potential Sweep Method to Evaluate Rate Capa
40、bilityin CapacitiveJ. Electrochimica Acta, 2020, 3(39): 374-380. 40 Suss M E. Size-based ion selectivity of micropore electric double layers in capacitive deionization electrodesJ. Journal of the Electrochemical Society, 2021, 164(9): 73-77. 41 Wen X, Zhang D, Shi L, et al. Three-dimensional hierarc
41、hical porous carbon with a bimodal pore arrangement for capacitive deionizationJ. Journal of Materials Chemistry, 2020, 22(45): 35-44. 42 Landon J, Gao X, Kulengowski B, et al. Impact of Pore Size Characteristics on the Electrosorption Capacity of Carbon Xerogel Electrodes for Capacitive Deionizatio
42、nJ. Journal of the Electrochemical Society, 2020, 159(11): A1861- A1866. 43 Gaikwad M S, Balomajumder, Chandrajit. Polymer coated Capacitive Deionization Electrodefor Desalination: A mini reviewJ. Electrochemical Energy Technology, 2021, 2(1): 1-5. 44 Wang Y, El-Deen A G, Li P, et al. High-Performan
43、ce Capacitive Deionization Disinfection of Water with Graphene Oxide-graft-Quaternized Chitosan Nanohybrid Electrode CoatingJ. Acs Nano, 2021, 9(10): 10-12. 45 Jae-Hwan Choi. Fabrication of a carbon electrode using activated carbon powder and application to the capacitive deionization processJ. Sepa
44、ration and Purification Technology, 2018, 70(7): 362-366. 46 Yasin A S, Mohamed I M A, Mousa H M, et al. Facile synthesis of TiO2/ZrO2 nanofibers/nitrogen co-doped activated carbon to enhance the desalination and bacterial inactivation via capacitive deionizationJ. Scientific Reports, 2021, 8(14): 5
45、05-512. 47 Farmer J C, Richardson J H, Fix D V, et al. Desalination with carbon aerogel electrodes. RevisionJ. Desalination with Carbon Aerogel Electrodes, 1996, 6(8): 55-58. 48 Xu P, Drewes J E, Heil D, et al. Treatment of brackish produced water using carbon aerogel-based capacitive deionization t
46、echnologyJ. Water Research, 2008, 42(10): 2605-2617. 49 Richardson J H, Farmer J C, Fix D V, et al. Desalting in wastewater reclamation using capacitive deionization with carbon aerogel electrodesJ. Office of Scientific Technical Information Technical Reports, 1996, 15(4): 595-599. 50 Quan X, Fu Z,
47、Yuan L, et al. Capacitive deionization of NaCl solutions with ambient pressure dried carbon aerogel microsphere electrodesJ. Rsc Advances, 2021, 7(57): 75-82. 51 Zhang D, Wen X, Shi L, et al. Enhanced capacitive deionization of graphene/mesoporous carbon compositesJ. Nanoscale, 2020, 4(17): 544. 52
48、Peng Z, Zhang D, Shi L, et al. High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionizationJ. Journal of Materials Chemistry, 2020, 22(14): 6603-6612. 53 Wang H, Shi L, Yan T, et al. Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionizationJ. Journal of Materials Chemistry A, 2020, 2(13): 4739-4750. 54 Tsouris C, May