《分子蒸馏分离废弃润滑油工艺优化研究,硕士论文.docx》由会员分享,可在线阅读,更多相关《分子蒸馏分离废弃润滑油工艺优化研究,硕士论文.docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、分子蒸馏分离废弃润滑油工艺优化研究,硕士论文由基础油辅以各类添加剂组成的润滑油品种繁多,在高温、高压、高剪切、富氧条件下,润滑油中含S、N、O的极性添加剂与基础油中不饱和烃类组分发生氧化、分解、聚合生成多环短侧链芳烃、胶质、沥青质,油品性质受损,难以知足长期使用要求需要换油.我们国家每年更替的废润滑油总量约为800万t,华而不实60%左右的废润滑油均可回收,但废油常不经任何处理被直接倒入土壤、河流中,亦或是作为燃料使用.随着石油资源的日益紧张及环保意识的加强,废润滑油的回收再利用遭到了社会各界的广泛关注,研究符合客观实际的再生工艺,确定适宜的操作条件已成为有效处理HW08类危险固废-废润滑油、
2、提高石油资源利用率、减少环境污染的关键. 通过比照废润滑油各种再生工艺的优缺点,指出无论是技术背景、加工形式、还是产物收率等方面分子蒸馏均具有绝对优势.基于废润滑油理化性能数据,以馏分油收率、黏度指数为评价指标,借助现有的分子蒸馏装置开展实验室小试,在单因素试验初步确定压力、加热温度、预热温度、进料量、刮膜转速等工艺参数的基础上,开展正交试验,结合极差、方差分析,比照指出了各因素间的主次关系:体系压力 加热温度 进料量 预热温度,优化了废油再生工艺参数,确定分子蒸馏最佳工艺条件为:一级压力90Pa,加热温度170,预热温度150,进料量2.0kg/h,转速80r/min;二级压力50Pa,加热
3、温度220,预热温度190,进料量1.0kg/h,转速100r/min;三级压力10Pa,加热温度270,预热温度250,进料量0.4kg/h,转速130r/min. 在最佳工艺条件基础上进行三级分子蒸馏切割试验,馏分油再生率为83.64%,到达了理想水平.比照中性油、光亮油的相关性能指标,分析、评定蒸馏操作的有效性,结果显示:一级、二级馏分油各项理化性能参数均符合(润滑油基础油协议标准中HVI+4、HVI6号基础油的技术要求,三级馏分油除色度外知足HVI8号基础油性能要求.为改良其色度,开展了白土补充精制工艺研究,借助单因素试验考察了白土用量、参加方式、精制温度、精制时间、搅拌速度对油品色度
4、的影响,得出白土吸附最佳工艺条件为:精制温度230、精制时间45min、搅拌速率120r/min、白土用量25%且分批次投放.因白土与水泥原料化学组成类似,补充精制后产生的废白土残渣亦可用作水泥生产原料.经测定,白土补充精制后馏分油色度达标.试验结果表示清楚分子蒸馏与白土补充精制工艺相结合进行废润滑油再生具有可行性,能够作为将来废润滑油再生利用的主流技术. 在把握分子蒸馏实验室小试数据的基础上,根据废润滑油物性,设计了一套知足进料量为80kg/h的分子蒸馏中试设备,计算得出料液在分子蒸馏器中的液膜厚度为0.28mm,平均停留时间 9 s,分子蒸馏器外径及高度分别为 245 mm、1000 mm
5、,加热面面积 0.77 m2, 冷凝面面积 0.48 m2;并对配套装置进行了选型分析,对分子蒸馏再生废润滑油的工业化推 广提供了技术支持. 本文关键词语:废润滑油,循环再生,分子蒸馏,白土精制 论文类型:综合研究 ABSTRACT Lubricating oil is composed of base oil supplemented with various additives. Under high temperature, heavy pressure, high-speed shearing and oxygen-enriched conditions, modified compo
6、nents such as polycyclic short side chain aromatic hydrocarbons, colloids, asphaltenes, additive consumables which are come from the oxidation, decomposition, polymerization of polar additives containing S, N, O in lubricating oil and unsaturated hydrocarbon components in base oil cause damage to th
7、e properties of oil products, it is difficult to play a role of long-term use and oil replacement is necessary. The total amount of waste lubricating oil replaced in China is about 8 million tons annually, of which about 60 % of the waste lubricating oil can be recovered, but the waste oil is often
8、directly poured into the soil, rivers or used as fuel without any treatment. With the increasing tension of oil resources and the enhancement of environmental awareness, the recycling of waste lubricating oil attractting widespread attention from all sectors of society. Studying the regeneration pro
9、cess in line with objective reality and determining the appropriate operating conditions have become the key to dealing with HW08 hazardous solid waste-waste lubricating oil, improving the utilization rate of petroleum resources and reducing environmental pollution. By comparing the advantages and d
10、isadvantages of various regeneration processes of waste lubricating oil, it is pointed out that the molecular distillation process has absolute advantages in terms of technical background, processing form, and product yield. On the strength of physical and chemical performance data of waste lubricat
11、ing oil, the distillate yield and viscosity index are regarded as evaluation indicators, and based on the preliminary determination of process parameters such as pressure, heating temperature, preheating temperature, feed volume, scraping film speed in a single factor experiment, orthogonal experime
12、nts is carried out. Combined the analysis of range and variance, this study points out the primary and secondary relationships of the factors that affect the yield: system pressure heating temperature feed rate preheating temperature, optimizes the process parameters of waste oil regeneration, and d
13、etermine the optimal process conditions for the three-stage molecular distillation: first-stage pressure 90 Pa, heating temperature 170 , pre-heating temperature 150 , feed rate 2.0 kg/h, rotational speed 80 r/min, second-stage pressure 50 Pa, heating temperature 220 , pre-heating temperature 190 ,
14、feed rate 1.0 kg/h, rotational speed 100 r/min, three-stage pressure 10 Pa, heating temperature 270 , pre-heating temperature 250 , feed rate 0.4 kg/h, rotational speed 130 r/min. Based on the best process conditions, a three-stage molecular distillation experiment was performed, the distillate yiel
15、d rate was 83.64 %, which reached the ideal level. Compared with the relevant performance indicators of neutral oil and bright oil, the effectiveness of the distillation operation is analyzed and evaluated. The results show that the physical and chemical performance parameters of the first and secon
16、d distillate oils meet the technical requirements of HVI +4 and HVI 6 base oils in the Lubricant Base Oil Protocol Standard, the third distillate oils meet the performance of HVI 8 base oil except chroma. In order to improve its chromaticity, research on clay adsorption process is carried out. The e
17、ffects of dosage of clay, adsorption mode,temperature, time, and stirring rate on oil chroma is investigated by means of a single factor experiment and orthogonal experiments. It is concluded that the optimum process conditions for clay adsorption process: refining temperature of 230 , refining time
18、 of 45 min, stirring rate of 120 r/min, the dosage accounts for 25 % of the mass of the lubricant and batch feeding. Through the test, the color of distillate oil after replenishment of white clay reached the standard. The experimental results show that the combination of molecular distillation and
19、clay adsorption process is feasible for the regeneration of waste lubricating oil, and can be used as the mainstream technology for the future recycling of waste lubricating oil. In order to provide technical support for the industrialization and promotion of molecular distillation regeneration of w
20、aste lubricating oil, a set of pilot equipment for molecular distillation with a feed volume of 80 kg/h was designed and analyzed, on the basis of mastering the experimental data of molecular distillation laboratory. According to the calculation, the liquid film thickness of the feed liquid in the m
21、olecular still is 0.28 mm, the average residence time is 9 s, the outer diameter and height of the molecular still are 245 mm and 1000 mm, the heating surface area is 0.77 m2, and the condensation surface area 0.48m2. Keywords: Waste lubricating oil, Recycling, Molecular distillation process, Clay a
22、dsorption process Thesis: Fundament Study 目 录 幅较长,部分内容省略,具体全文见文末附件 第六章结论与瞻望 6.1结论 本文比照分析了废润滑油不同再生工艺的优劣,指出分子蒸馏具备蒸馏压力低、加热温度低、物料受热时间短、能耗低且分离效率高等特点,并对其原理、技术优势进行了详尽阐述.在把握废润滑油理化性能数据的基础上,借助现有的分子蒸馏装置,开展实验室小试,通过讨论压力、加热温度、预热温度、进料量、刮膜转速等因素对馏分油收率、质量的影响,确定了最佳工艺条件,除此之外,对馏分油补充精制工艺进行了研究并核算设计出了知足80kg/h进料量的分子蒸馏中试设备.得
23、出相关结论如下: (1)废机油理化性能测定结果显示:油样黏度指数高、闪点高、倾点低、水含量少、酸值与硫含量适中,表示清楚对此油样进行资源化再生具备可操作性. (2)借助现有的实验室分子蒸馏小试装置开展分离试验.考察了体系压力、加热温度、预热温度、进料量、刮膜转速等单因素对馏分油收率及黏度指数的影响趋势,设计正交试验,通过极差、方差数据分析,得到各因素影响收率的强弱程度:体系压力 加热温度 进料量 预热温度,并优化确定了三级分子蒸馏最佳工艺条件:一级压力90Pa,加热温度170,预热温度150,进料量2.0kg/h,转速80r/min;二级压力50Pa,加热温度220,预热温度190,进料量1.
24、0kg/h,转速100r/min;三级压力10Pa,加热温度270,预热温度250,进料量0.4kg/h,转速130r/min. (3)利用最佳工艺条件进行三级分子蒸馏切割试验,馏分油再生率为83.64%,且饱和烃含量高达90%.最优工况条件下制取的馏分油物性测定结果显示:一级馏分油与二级馏分油各项指标均符合(润滑油基础油协议标准中HVI+4、HVI6号基础油的技术要求,三级馏分油除色度外,各项指标均符合HVI8号基础油的技术要求.三级馏分油白土补充精制所得白土吸附最佳工艺条件:精制温度230、精制时间45min、搅拌速率120r/min、白土用量25%且分批次投放.白土补充精制后三级馏分油色
25、度得到显着改善,各指标与HVI8号基础油相近.因白土与水泥原料化学组成类似且原料替代率高,补充精制产生的废白土渣可用作水泥生产原料. (4)在已把握分子蒸馏实验室小试数据的基础上,根据传质、传热原理设计了80kg/h分子蒸馏中试设备:液膜厚度0.28mm,物料平均停留时间9s,分子蒸馏器外径245mm,高度1000mm,加热面面积0.77m2,冷凝面面积0.48m2.配备的1.50m2预热器、YCB-17/10进料泵、LQRY-26-20-100导热油泵、CKJZ-600真空机组能够知足蒸馏需求. 6.2瞻望 由于我们国家废油分布不集中,废润滑油回收工作大多由私人企业处理,但多数厂家再生工艺尚
26、不成熟,加之大型的废润滑油再生处理装置还未规模化,导致当前国内废润滑油再生市场还未构成良好的秩序.当前国内废润滑油再生工艺仍然以酸洗-白土、溶剂萃取等传统工艺为主,不仅再生基础油性能得不到本质性的改善,而且产生的废酸、废白土渣等还会严重危害环境.为解决当下废润滑油再生行业出现的种种难题,以分子蒸馏为代表的新型无酸工艺日渐成为将来废润滑油再生领域的研发热门. 面对中国乃至世界石油资源日渐短缺,而润滑油需求量只增不减的现在状况,本课题将分子蒸馏与白土精制相结合对废润滑油进行再生,根据各基础油馏分段的化学组成、性能指标的差异施行单独分析,确定了最佳工艺条件,使废润滑油的减量化、无害化、高值化利用成为
27、现实,为国内废润滑油再生工艺不断朝着高效、节能、环保的方向发展奠定了基础,为后期分子蒸馏再生废润滑油的工业化推广提供了重要的参考根据. 以下为参考文献 1 徐春明,杨朝合.石油炼制工程(第四版)M.北京:石油工业出版社.2018:138-139. 2 李玉华.国内外润滑油基础油产品分类标准的发展及现在状况分析J.山东工业,2021(16):58- 59. 3 Dang GS.Reefing of used oils-A review of commer-cial processesJ.Tribotest,1997,4 (3):445-457. 4 李金惠,王琪,王洪涛,等.危险废物管理与处理处
28、置技术M.北京:化学工业出版 社,2003:450. 5 高能文,珂威,范益群,等.废润滑油的再生J.化工进展,2018,28(2):414. 6 施洪香.浅析我们国家润滑油现在状况与发展趋势J.精细与专用化学品,2021,25(03):1-9. 7 赵麦玲,邓义林.废润滑油再生工艺技术J.化工设计通讯,2021,43(01):53-55. 8 水天德,张景河,余志英.当代润滑油生产工艺(第一版)M.北京:中国石化出版 社,1997:45. 9 谢凤.内燃机油在使用经过中的质量下降及其预防J.润滑与密封,2003(05):100-101. 10Guo Z,Wang S,Gu Y,et al.S
29、eparation characteristics of biomass pyrolysis oil in molecular distillationJ.Separation and Purification Technology,2018,76(1):52-57. 11Wen-Tien Tsai.An analysis of used lubricant recycling,energy utilization and its environmental benefit in TaiwanJ.Energy,2018,36(7). 12梁扬扬,李金惠,董庆银,等.我们国家废润滑油管理和再生利
30、用技术现在状况J.环境工程技术学 报,2021,8(03):282-289. 13蔡恒吉,程斌,彭大海,等.我们国家废矿物油再生工艺的现在状况及将来的发展方向J.化工管 理,2021(24):83-85. 14Thallada Bhaskara, Md Azhar Uddinb, Akinori Muto,et al.Recycling of waste lubricant oil chemical feedstock or fuel oil over supported iron oxide catalystsJ.Fuel,2004,83(01):9-15. 15谢海群,韩云,代敏,等.废汽
31、油机油再生工艺研究J.石油炼制与化工,2021,48(01):85-88. 16孙凤龙.国内润滑油基础油生产技术进展J.能源化工,2021,39(03):41-45. 17刘朝全,姜学锋.国内外油气行业发展报告R.北京:石油工业出版社,2021. 18杨茜雯,陈文艺.再生废润滑油工艺J.应用化工,2021,46(07):1401-1404. 19Muntean JV,Libera JA,Snyder SW,et al.Quantitative nuclear magnetic resonance spectr- oscopy as a tool to evalute chemical modi
32、fication of deep hydrotreated recycled lube oilsJ.Energy Fuels,2020,27(1):133-137. 20郑宁来.废润滑油再生新技术J.石油炼制与化工,2021,47(06):77. 21李 艳 红 , 吴 戒 骄 , 将 国 权 , 等 . 废 润 滑 油 再 生 技 术 的 研 究 进 展 J. 石 油 化 工,2021,45(02):244-250. 22Kupareva A,Maki-Arvela P,Murzin DY.Technology for rerefining used lube oils applied in
33、 Europe:A reviewJ.Chem Technol Biotechnol,2020,88(10):1780-1793. 23周松锐,尹英遂,王媛媛,等.短程蒸馏技术在废润滑油再生工艺中的应用J.化工进 展.2006,25(11):41-44. 24杨小平,张贤明,欧阳平.废润滑油再生技术的研究进展J.重庆工商大学学报(自然科学 版),2021,32(02):96-99. 25尹 英 遂 , 冯 明 , 黄 卫 星 . 废 润 滑 油 再 生 分 子 蒸 馏 窄 分 技 术 应 用 研 究 J. 现 代 化 工,2018(2):66-69. 26熊 道 陵 , 杨 金 鑫 , 张 团
34、结 , 等 . 废 润 滑 油 再 生 工 艺 的 研 究 进 展 J. 化 工 进 展,2020,33(10):2778-2784. 27钟道悦,隋贤栋,刘文龙.废润滑油再生技术的研究进展J.环境科技,2020,25(06):69-72. 28贺建华,水琳.中国润滑油废油再生市场需求分析J.现代石油石化,2020,20(12):33-36. 29王 鑫 , 郭 忠 华 , 段 少 华 . 废 润 滑 油 的 回 收 与 利 用 技 术 综 述 J. 炼 油 与 化 工,2020,23(03):3-5+57. 30金佳佳,隋秀华,鄂红军.废润滑油的回收与再生利用J.能源与节能,2020(03)
35、:29-31. 31杨宏伟,费逸伟,胡建强.国内外废润滑油的再生J.润滑油,2006(06):9-11. 32林世雄.石油炼制工程M.北京:石油工业出版社,2000. 33杨村,于宏奇,冯武文.分子蒸馏技术M.北京:化学工业出版社,2020. 34李鑫钢.当代蒸馏技术M.北京:化学工业出版社,2018. 35戴钧梁,戴立新.废润滑油再生M.北京:中国石化出版社,2018. 36Czeslaw kajdas.Major Pathways for used oil Disposal and Recycling.Part 1J.Tribotest Journal,2000,7:61-74. 37Ma
36、jano G,Mintova S.Mineral oil regeneration using selective molecular sieves as sorbentsJ.Chemosphere,2018,78(5):591-598. 38司妍杰.浅谈废润滑油再生J.润滑油,2002,17(3):63-64. 39张曦.矿用废润滑油再生利用现在状况综述J.中国物资再生,1996,(6):22-24. 40林燕生.测定重质油族组成的 TLC/FID 法与柱色谱法的相关性研究J.石油炼制与化 工,1992,(10):49-52. 41董志学,贾丽,王军,等.废油再生技术的研究进展J.工业催化,
37、2003,11(12):33-35. 42刘程,石磊,荣绍丰,等.废润滑油再生的研究进展J.润滑油,2020,28(04):57-61. 43吕涯,杨洁,王琳.再生润滑油着色物质的研究J.石油学报,2021,32(01):132-142. 44王延臻,李瑞丽.白土精制对润滑油基础油脱色与脱氮作用的讨论J.石油炼制与化 工,2020,42(7):25-29. 45郭大光.润滑油再生工艺技术J.现代化工,2003,32(2):24-26. 46孙浩程,回军.润滑油精制废白土处理工艺的研究进展J.当代化工,2021,38(10):58-61. 47赵汇川,赵超群.一种废白土无害化处理新工艺:CN,1
38、04801266AP.2021-07-29. 48王延臻,许海龙,高丽,等.一种再生废白土的方式方法:CN,103394339AP.2020-11-20. 49姜善英,梁成安.废白土中油分回收的研究J.齐鲁石油化工,2018,39(2):137-139. 50KUPEREVA A,MAKI-ARVELA P.Technology for rerefining used lube oils applied in EuropeJ.Journal of Chemical Technology and Biotechnology,2020,88(10):1780-1793. 51任天辉,王大璞.废润滑油再生加工技术J.中国资源综合利用,2021,(3):8-12. 52任雅琳,郭大光,王利芳.废润滑油再生技术应用现在状况J.石油化工应用,2018,38(12):58-59. 53李鑫刚,张旭斌,许春建,等.真空下同轴圆筒间分子蒸馏经过的数值模拟J.经过工程学 报,2021,5(1):97-102. 54陈琪,徐林林,李庆春,等.高黏度齿轮泵的设计及应用J.化工机械,2003,30(6):340-342.