《机械工程测试技术基础ppt.pptx》由会员分享,可在线阅读,更多相关《机械工程测试技术基础ppt.pptx(71页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第一章 信号及其描述第一节第一节 信号的分类与描述信号的分类与描述第二节第二节 周期信号与离散频谱周期信号与离散频谱第三节第三节 瞬变非周期信号与连续频谱瞬变非周期信号与连续频谱第四节第四节 随机信号随机信号第1页/共71页第一节第一节 信号的分类与描述信号的分类与描述一、信号的分类一、信号的分类1 1、确定性信号和随机信号、确定性信号和随机信号确定性信号确定性信号:可表示为一个确定的时间函数,:可表示为一个确定的时间函数,因而可确定其任何时刻的量值。因而可确定其任何时刻的量值。随机信号随机信号:具有不能被预测的特性,无法用数:具有不能被预测的特性,无法用数学关系式来描述,只能通过学关系式来描
2、述,只能通过统计观察统计观察来加以描来加以描述的信号。述的信号。第2页/共71页确定性信号又分为确定性信号又分为周期信号周期信号和和非周期信号非周期信号。周期信号:周期信号:定义:满足下面关系式的信号:定义:满足下面关系式的信号:x(t)=x(t+nTx(t)=x(t+nT0 0)式中,式中,T T0 0周期。周期。非周期信号:非周期信号:定义:不具有周期重复性的确定性信号。定义:不具有周期重复性的确定性信号。非周期信号又可分成准周期信号和瞬态信号两类。非周期信号又可分成准周期信号和瞬态信号两类。第3页/共71页非周期信号又可分成非周期信号又可分成准周期信号准周期信号和和瞬变非周瞬变非周期信号
3、期信号两类。两类。准周期信号准周期信号:由多个具有不成比例周期的正:由多个具有不成比例周期的正弦波之和形成,或者称组成信号的正(余)弦波之和形成,或者称组成信号的正(余)弦信号的频率比不是有理数弦信号的频率比不是有理数 。瞬变非周期信号瞬变非周期信号:或在一定时间内存在,或:或在一定时间内存在,或随着时间的增长而衰减至零的信号。随着时间的增长而衰减至零的信号。第4页/共71页x(t)矩形脉冲信号;y(t)衰减指数脉冲信号;z(t)正弦脉冲;三种瞬变非周期信号第5页/共71页第6页/共71页2 2、连续信号和离散信号、连续信号和离散信号分类依据:分类依据:自变量(即时间自变量(即时间t t)是连
4、续的还是离散的)是连续的还是离散的 。信号的幅值是连续的还是离散的信号的幅值是连续的还是离散的 ;连续信号连续信号:自变量和幅值均为连续的信号称为自变量和幅值均为连续的信号称为模拟信号模拟信号 ;自变量是连续、但幅值为离散的信号,则称为自变量是连续、但幅值为离散的信号,则称为量化信量化信号号。离散信号离散信号:信号的自变量为离散值、但其幅值为连续值时,则称信号的自变量为离散值、但其幅值为连续值时,则称该信号为被该信号为被采样信号采样信号。信号的自变量及幅值均为离散的,则称为信号的自变量及幅值均为离散的,则称为数字信号数字信号 ;第7页/共71页第8页/共71页3 3、能量信号和功率信号、能量信
5、号和功率信号能量信号能量信号:例如:例如:在右图所示的电路中,在右图所示的电路中,x(t)x(t)表示电压,表示电压,瞬时功率瞬时功率P P(t)=xt)=x2 2(t)/R;(t)/R;若若R=1R=1,P P(t)=xt)=x2 2(t)(t)。瞬时功率对时间的积分即为能量。瞬时功率对时间的积分即为能量。定义:当定义:当x x(t t)满足关系式)满足关系式 则称信号则称信号x x(t t)为有限能量信号)为有限能量信号 ,简称能量信号。,简称能量信号。矩形脉冲、衰减指数信号等均属这类信号。矩形脉冲、衰减指数信号等均属这类信号。X(t)R第9页/共71页功率信号:若信号在区间(若信号在区间
6、(,)的能量是无限的)的能量是无限的但它在有限区间(但它在有限区间(t t1 1,t,t2 2)的平均功率有限,即的平均功率有限,即亦即信号具有有限的(非零)平均功率,则称信号亦即信号具有有限的(非零)平均功率,则称信号为功率有限信号,简称功率信号。为功率有限信号,简称功率信号。第10页/共71页二、信号的时域描述和频域描述二、信号的时域描述和频域描述n时域描述时域描述:以:以时间为独立变量时间为独立变量;反映信号的幅值随时;反映信号的幅值随时间变化的关系;间变化的关系;n频域描述频域描述:以:以频率为独立变量频率为独立变量,由信号的时域描述通,由信号的时域描述通过适当方法变换得到;反映信号的
7、过适当方法变换得到;反映信号的频率结构频率结构和各频率和各频率成分的成分的幅值、相位幅值、相位关系。关系。图图14周期方波的傅里叶级数展开式:周期方波的傅里叶级数展开式:第11页/共71页上式可改写为:上式可改写为:式中式中0=2/T0。0称为称为基波频率基波频率,简称,简称基频基频。以为独立变量为独立变量,此式即为该周期方波的频域描述。,此式即为该周期方波的频域描述。在信号分析中,将组成信号的各频率成分找出,按序在信号分析中,将组成信号的各频率成分找出,按序排列,得出信号的排列,得出信号的“频谱频谱”。若以频率为横坐标、分别以幅值或相位为纵坐标,便若以频率为横坐标、分别以幅值或相位为纵坐标,
8、便分别得到信号的分别得到信号的幅频谱幅频谱和和相频谱相频谱。图。图15。第12页/共71页第13页/共71页第14页/共71页表表1 11 1的说明的说明:每个信号都有其特有的幅频谱和相频谱,每个信号都有其特有的幅频谱和相频谱,因此,在频域中每个信号都需要同时用幅因此,在频域中每个信号都需要同时用幅频谱和相频谱描述才是完整的。频谱和相频谱描述才是完整的。第15页/共71页n为什么要对信号进行频域描述:为什么要对信号进行频域描述:l信号的时域描述反映了信号瞬时值随时间变化的情况,信号的时域描述反映了信号瞬时值随时间变化的情况,频域描述反映了信号的频率组成及其幅值、相角的大频域描述反映了信号的频率
9、组成及其幅值、相角的大小。小。l为解决不同问题,需掌握信号不同方面的特征,因而为解决不同问题,需掌握信号不同方面的特征,因而可采用不同的描述方式。例如:评定机器振动烈度可采用不同的描述方式。例如:评定机器振动烈度(时域描述)和寻找振源(频域描述)。(时域描述)和寻找振源(频域描述)。l两种描述方法能互相转换,而且包含同样的信息量。两种描述方法能互相转换,而且包含同样的信息量。第16页/共71页 例如某大型水电站在某一发电工况下,其厂房例如某大型水电站在某一发电工况下,其厂房产生强烈振动。按理论分析和经验估计,振源可产生强烈振动。按理论分析和经验估计,振源可能来自能来自水轮机或发电机的机械振动水
10、轮机或发电机的机械振动,或,或来自流道来自流道某一部份(如引水管、涡壳、导叶、尾水管)的某一部份(如引水管、涡壳、导叶、尾水管)的水体振动水体振动。为查找振源及振源向厂房传递的路径,。为查找振源及振源向厂房传递的路径,在水轮发电机组和厂房的多处安置在水轮发电机组和厂房的多处安置拾振器拾振器,在流,在流道多处安置道多处安置压力传感器压力传感器。试验时,用多台磁带记。试验时,用多台磁带记录仪同步记录近百个测点的振动及压力波动。试录仪同步记录近百个测点的振动及压力波动。试验完后,对记录的信号进行验完后,对记录的信号进行频谱分析频谱分析,查找出强,查找出强振振源来自导叶与尾水管间的局部水体共振。振振源
11、来自导叶与尾水管间的局部水体共振。第17页/共71页第二节第二节 周期信号与离散频谱周期信号与离散频谱一、傅里叶级数的三角函数展开式一、傅里叶级数的三角函数展开式 在有限区间上,一个周期信号x(t)当满足狄里赫利条件时可展开成傅里叶级数:式中,(1-7)第18页/共71页信号x(t)的另一种形式的傅里叶级数表达式:式中,An称信号频率成分的幅值,称初相角。n1,2,第19页/共71页讨论:讨论:式中第一项式中第一项a a0 0为周期信号中的常值或直流分量为周期信号中的常值或直流分量 ;从第二项依次向下分别称信号的基波或一次谐波、二次从第二项依次向下分别称信号的基波或一次谐波、二次谐波、三次谐波
12、、谐波、三次谐波、n n次谐波次谐波 ;将信号的角频率将信号的角频率0 0作为横坐标,可分别画出信号幅值作为横坐标,可分别画出信号幅值A An n和相角和相角 随频率随频率0 0变化的图形,分别称之为信号的变化的图形,分别称之为信号的幅频谱图和相频谱图。幅频谱图和相频谱图。由于由于n n为整数,各频率分量仅在为整数,各频率分量仅在n n0 0的频率处取值,因的频率处取值,因而得到的是关于幅值而得到的是关于幅值A An n和相角和相角 的离散谱线。的离散谱线。周期信号的频谱是离散的周期信号的频谱是离散的!例题例题1 11 1,求图,求图1 16 6中周期三角波的傅里叶级数。中周期三角波的傅里叶级
13、数。第20页/共71页二、傅里叶级数的复指数函数展开式二、傅里叶级数的复指数函数展开式由欧拉公式可知:代入式(17)有:令第21页/共71页则则或或这就是傅里叶级数的这就是傅里叶级数的复指数展开形式。复指数展开形式。(1-15)第22页/共71页求傅里叶级数的复系数求傅里叶级数的复系数C Cn n一般情况下,一般情况下,C Cn n是是复数,复数,可写成可写成其中其中第23页/共71页绘制复指数形式的频谱:幅频谱图和相频谱图实频谱图和虚频谱图v注意:复指数函数形式的频谱为注意:复指数函数形式的频谱为双边谱双边谱(幅频(幅频谱为偶函数,相频谱为奇函数),三角函数形式谱为偶函数,相频谱为奇函数),
14、三角函数形式的频谱为的频谱为单边谱单边谱,二者的量值关系:,二者的量值关系:第24页/共71页例题例题1 12 2:画出余弦、正弦函数的实、虚部频谱图。:画出余弦、正弦函数的实、虚部频谱图。周期信号的频谱的特点周期信号的频谱的特点:1.1.周期信号的频谱是离散谱;周期信号的频谱是离散谱;2.2.周期信号的谱线仅出现在基波及各次谐波频率周期信号的谱线仅出现在基波及各次谐波频率处;处;3.3.各频率分量的谱线高度表示该谐波的幅值或相各频率分量的谱线高度表示该谐波的幅值或相位角。幅值谱中各频率分量的幅值随着频率的位角。幅值谱中各频率分量的幅值随着频率的升高而减小,频率越高,幅值越小。在升高而减小,频
15、率越高,幅值越小。在频谱分频谱分析析中,没必要取次数过高的谐波分量。中,没必要取次数过高的谐波分量。第25页/共71页三、周期信号的强度表述三、周期信号的强度表述峰值和峰峰值峰值和峰峰值均值和绝对均值均值和绝对均值有效值和平均功率有效值和平均功率第26页/共71页第三节第三节 瞬变非周期信号与连续频谱瞬变非周期信号与连续频谱一、傅里叶变换一、傅里叶变换 设设x x(t t)为)为(-T(-T0 0/2,T/2,T0 0/2)/2)区间上的一个周期函数。它可区间上的一个周期函数。它可表达为傅里叶级数的形式:表达为傅里叶级数的形式:式中式中 将将c cn n代入上式得代入上式得 第27页/共71页
16、 当当T T0 0时,区间时,区间(-T(-T0 0/2,T/2,T0 0/2)/2)变成变成(-,)(-,),另外,频,另外,频率间隔率间隔=0 0=2/T=2/T0 0变为无穷小量,离散频率变为无穷小量,离散频率nn0 0变成变成连续频率连续频率 。将上式中括号中的积分记为将上式中括号中的积分记为X(X(),则有则有 (126)(127)(125)第28页/共71页 在数学上,称在数学上,称X(X()为为x(t)x(t)的的傅里叶变换傅里叶变换,x(t)x(t)为为X(X()的的傅里叶逆变换傅里叶逆变换,记为,记为把把2 2f f代入式(代入式(1 12525),则),则1-261-26和
17、和1 12727变为变为(1-28)(1-29)这样就避免了傅里叶变换中出现这样就避免了傅里叶变换中出现1/21/2,简化了公式,且有简化了公式,且有第29页/共71页 非周期函数非周期函数x x(t t)存在傅里叶变换的)存在傅里叶变换的充充分条件分条件是是x x(t t)在区间)在区间(-,)(-,)上绝对可上绝对可积,即积,即 但上述条件并非但上述条件并非必要条件必要条件。因为当引。因为当引入入广义函数广义函数概念之后,许多原本不满足绝概念之后,许多原本不满足绝对可积条件的函数也能进行傅里叶变换对可积条件的函数也能进行傅里叶变换。第30页/共71页小结:小结:从式从式(1 12929)可
18、知,可知,一个非周期函数可分解成频率一个非周期函数可分解成频率f f连续变化的谐波的叠加连续变化的谐波的叠加。式中。式中X(f)dfX(f)df的是谐波的是谐波e ej2fj2f的的系数,决定着信号的振幅和相位。系数,决定着信号的振幅和相位。X(f)X(f)或或X()X()为为x(t)x(t)的连续频谱。的连续频谱。由于由于X(f)X(f)一般为实变量一般为实变量f f的复函数,故可将其写为的复函数,故可将其写为 将上式中的将上式中的 称非周期信号称非周期信号x(t)x(t)的连续幅值谱,的连续幅值谱,称称x(t)x(t)的连续相位谱。的连续相位谱。例题例题1 13 3,求矩形窗函数的频谱。,
19、求矩形窗函数的频谱。第31页/共71页第32页/共71页求该函数的频谱求该函数的频谱:第33页/共71页第34页/共71页函数的幅频谱和相频谱分别为函数的幅频谱和相频谱分别为第35页/共71页二、傅里叶变换的主要性质二、傅里叶变换的主要性质1.奇偶虚实性奇偶虚实性第36页/共71页讨论:讨论:第37页/共71页2.对称性对称性3.时间尺度改变特性时间尺度改变特性第38页/共71页对称性举例第39页/共71页 尺度改变性质举例 a)k=1 b)k=0.5 c)k=2 第40页/共71页4.时移和频移特性时移和频移特性第41页/共71页第42页/共71页5.卷积特性卷积特性第43页/共71页6.微
20、分和积分特性微分和积分特性第44页/共71页三、几种典型信号的频谱三、几种典型信号的频谱1.矩形窗函数的频谱矩形窗函数的频谱第45页/共71页结论:结论:矩形窗函数在时域中有限区间取值,但频域中频谱在频矩形窗函数在时域中有限区间取值,但频域中频谱在频率轴上连续且无限延伸。率轴上连续且无限延伸。实际工程测试总是实际工程测试总是时域中截取有限长度时域中截取有限长度(窗宽范围窗宽范围)的信的信号号,其本质是,其本质是被测信号与矩形窗函数在时域中相乘被测信号与矩形窗函数在时域中相乘,因而,因而所得到的频谱必然是被测信号频谱与矩形窗函数频谱在频所得到的频谱必然是被测信号频谱与矩形窗函数频谱在频域中的域中
21、的卷积卷积,所以实际工程测试得到的频谱也将是在,所以实际工程测试得到的频谱也将是在频率频率轴上连续且无限延伸轴上连续且无限延伸。第46页/共71页2.函数及其频谱函数及其频谱(1 1)定义)定义 l在在时间内矩形脉冲时间内矩形脉冲S S(t)(t),其面积为,其面积为1,1,当当 0 0 时,时,S S(t)(t)的极限称为的极限称为函数函数,也称为也称为单位脉冲函数单位脉冲函数。函数函数用标有用标有1 1的箭头表示。的箭头表示。l显然显然(t)(t)的的函数值函数值和和面积面积(通常表示能量或强度通常表示能量或强度)分别分别为为 SSS第47页/共71页第48页/共71页(2 2)采样性质)
22、采样性质若若f(t)f(t)为一连续信号,则有为一连续信号,则有 f(0)(t)f(0)(t)的函数值无穷大,强度为的函数值无穷大,强度为f(0)f(0)。在(在(,)积分,有)积分,有对于有延时对于有延时t t0 0的的函数函数(t-tt-t0 0),有,有第49页/共71页(3 3)与其他函数的卷积)与其他函数的卷积x()第50页/共71页(4 4)频谱)频谱对对(t)(t)取傅里叶变换取傅里叶变换 可见可见函数具有函数具有等强度、无限宽广等强度、无限宽广的频谱,这种频谱的频谱,这种频谱通常称为通常称为“均匀谱均匀谱”。第51页/共71页第52页/共71页利用利用对称对称、时移、频移时移、
23、频移性质,还可以得到以下傅里叶变性质,还可以得到以下傅里叶变换对。换对。第53页/共71页3.正、余弦函数的频谱密度函数正、余弦函数的频谱密度函数1.1.余弦函数的频谱余弦函数的频谱 利用欧拉公式,余弦函数可以表达为:利用欧拉公式,余弦函数可以表达为:其傅里叶变换为其傅里叶变换为 2.2.正弦函数的频谱正弦函数的频谱 同理,利用欧拉公式及其傅里叶变换有:同理,利用欧拉公式及其傅里叶变换有:第54页/共71页第55页/共71页等间隔的周期单位脉冲序列函数称为梳状函数,表等间隔的周期单位脉冲序列函数称为梳状函数,表达式为:达式为:式中式中 T Ts s为周期,为周期,n n为整数,为整数,n=0,
24、1,2,3,n=0,1,2,3,。因为周期脉冲序列函数为周期函数,所以可以写成傅。因为周期脉冲序列函数为周期函数,所以可以写成傅里叶级数的复指数函数形式里叶级数的复指数函数形式 4.周期单位脉冲序列的频谱周期单位脉冲序列的频谱第56页/共71页第57页/共71页因此,有周期单位脉冲序列函数的傅里叶级数的复数因此,有周期单位脉冲序列函数的傅里叶级数的复数表达式:表达式:根据式根据式 第58页/共71页可得周期单位脉冲序列函数的频谱,可得周期单位脉冲序列函数的频谱,周期单位脉冲序列的频谱仍是周期脉冲序列。时域周期周期单位脉冲序列的频谱仍是周期脉冲序列。时域周期为为 ,频域周期则为,频域周期则为 ;
25、时域脉冲强度为;时域脉冲强度为1 1,频域脉冲,频域脉冲强度则为强度则为 。第59页/共71页第60页/共71页第四节第四节 随机信号随机信号一、概述一、概述随机信号特点:随机信号特点:不能用确定的数学关系式描述;不能用确定的数学关系式描述;具有不能被预测的瞬时值;具有不能被预测的瞬时值;其值的变动服从统计规律;其值的变动服从统计规律;描述随机信号必须采用概率统计的方法描述随机信号必须采用概率统计的方法样本函数样本函数 :随机信号按时间历程所作的各次长时间的:随机信号按时间历程所作的各次长时间的观察观察 ,记作,记作xi(t)xi(t)。样本记录样本记录 :在有限时间区间上的样本函数。:在有限
26、时间区间上的样本函数。随机过程随机过程 :同一试验条件下的全部样本函数的集合:同一试验条件下的全部样本函数的集合(总体),记为(总体),记为x(t)x(t)。第61页/共71页第62页/共71页对随机过程常用的统计特征参数:对随机过程常用的统计特征参数:均值、均方值、方差、概率密度函数、概率分布函数和均值、均方值、方差、概率密度函数、概率分布函数和功率谱密度函数等。功率谱密度函数等。均值:均值:均方值:均方值:v这些特征参数均是按照这些特征参数均是按照集合平均集合平均来计算的,即在集合中来计算的,即在集合中的某个时刻对所有的样本函数的观测值取平均。为了与的某个时刻对所有的样本函数的观测值取平均
27、。为了与集合平均相区别,把按单个样本的时间历程进行平均的集合平均相区别,把按单个样本的时间历程进行平均的计算叫做计算叫做时间平均时间平均。第63页/共71页随机过程的分类:随机过程的分类:u平稳随机过程平稳随机过程 过程的统计特征参数不随时间的平移而变化的过程。过程的统计特征参数不随时间的平移而变化的过程。对于一个平稳随机过程,若它的任一单个样本函数的对于一个平稳随机过程,若它的任一单个样本函数的时间平均统计特征等于该过程的集合平均统计特征,时间平均统计特征等于该过程的集合平均统计特征,则该过程称为则该过程称为各态历经随机过程各态历经随机过程,本文仅限于讨论各,本文仅限于讨论各态历经随机过程的
28、范围。态历经随机过程的范围。两点说明:两点说明:工程中遇到的许多过程都可认为是平稳的,其中的许多都具有工程中遇到的许多过程都可认为是平稳的,其中的许多都具有各态历经性;有的虽不是严格的各态历经过程,也可当作各态各态历经性;有的虽不是严格的各态历经过程,也可当作各态历经随机过程处理。历经随机过程处理。测试工作中常以一个或几个有限长度的样本记录来推断整个随测试工作中常以一个或几个有限长度的样本记录来推断整个随机过程,以其机过程,以其时间平均时间平均来估计来估计集合平均集合平均。u非平稳随机过程非平稳随机过程 第64页/共71页二、随机信号的主要特征参数二、随机信号的主要特征参数1.均值、方差和均方
29、值均值、方差和均方值均值均值各态历经随机信号各态历经随机信号 的平均值的平均值 反映信号的常值分量,即反映信号的常值分量,即常值分量常值分量:式中,式中,T T为样本长度,即观测时间。为样本长度,即观测时间。方差方差 方差方差 描述随机信号的波动分量,反映描述随机信号的波动分量,反映 偏离偏离均值的波动情况,表示为:均值的波动情况,表示为:第65页/共71页均方值均方值 各态历经信号的均方值各态历经信号的均方值 反映信号的能量或强度,表示为:反映信号的能量或强度,表示为:标准差标准差 标准差标准差 为方差的正的平方根:为方差的正的平方根:均方根值均方根值 均方根值为均方根值为 正的平方根,即正
30、的平方根,即 第66页/共71页2.概率密度函数概率密度函数概率密度函数是指一个随机信号的瞬时值落在指定概率密度函数是指一个随机信号的瞬时值落在指定区间(区间(x,x+xx,x+x)内的概率对)内的概率对xx比值的极限值。比值的极限值。x(t)x(t)落在区间(落在区间(x,x+xx,x+x)内的时间为)内的时间为Tx:Tx:当当T T趋于无穷大,趋于无穷大,Tx/TTx/T的比值就是幅值落在区间的比值就是幅值落在区间(x,x+xx,x+x)的概率,即)的概率,即第67页/共71页第68页/共71页幅值概率密度函数p(x)为:不同的随机信号具有不同的概率密度函数图形,可以借此来识别信号的性质:(a a)正弦信号(初始)正弦信号(初始相角为随机量)相角为随机量)(b b)正弦加随机噪声)正弦加随机噪声(c c)窄带随机信号)窄带随机信号(d d)宽带随机信号)宽带随机信号第69页/共71页狄里赫利狄里赫利(Dirichlet)(Dirichlet)充条件充条件第70页/共71页感谢您的观看。感谢您的观看。第71页/共71页