清华大学控制工程2.pptx

上传人:莉*** 文档编号:73179726 上传时间:2023-02-16 格式:PPTX 页数:95 大小:1.26MB
返回 下载 相关 举报
清华大学控制工程2.pptx_第1页
第1页 / 共95页
清华大学控制工程2.pptx_第2页
第2页 / 共95页
点击查看更多>>
资源描述

《清华大学控制工程2.pptx》由会员分享,可在线阅读,更多相关《清华大学控制工程2.pptx(95页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第二章 控制系统的动态数学模型2.1 2.1 基本环节数学模型2.22.2 数学模型的线性化2.32.3 拉氏变换及反变换2.42.4 传递函数以及典型环节的传递函数2.52.5 系统函数方块图及其简化2.62.6 系统信号流图及梅逊公式2.72.7 受控机械对象数学模型2.82.8 绘制实际机电系统的函数方块图2.92.9 状态空间方程第1页/共95页第二章 控制系统的动态数学模型 建立控制系统的数学模型,并在此基础上对控制系统进行分析、综合,是机电控制工程的基本方法。如果将物理系统在信号传递过程中的动态特性用数学表达式描述出来,就得到了组成物理系统的数学模型。经典控制理论采用的数学模型主要

2、以传递函数为基础。而现代控制理论采用的数学模型主要以状态空间方程为基础。而以物理定律及实验规律为依据的微分方程又是最基本的数学模型,是列写传递函数和状态空间方程的基础。第2页/共95页本章要熟悉下列内容:1、建立基本环节(质量-弹簧-阻尼系统和电路网络)的数学模型及模型的线性化2、重要的分析工具:拉氏变换及反变换3、经典控制理论的数学基础:传递函数4、控制系统的图形表示:方块图及信号流图5、受控机械对象的数学模型6、绘制实际机电系统的函数方块图7、现代控制理论的数学基础:状态空间模型第3页/共95页2.1 基本环节数学模型 数学模型是描述物理系统的运动规律、特性和输入输出关系的一个或一组方程式

3、。系统的数学模型可分为静态和动态数学模型。静态数学模型:反映系统处于平衡点(稳态)时,系统状态有关属性变量之间关系的数学模型。即只考虑同一时刻实际系统各物理量之间的数学关系,不管各变量随时间的演化,输出信号与过去的工作状态(历史)无关。因此静态模型都是代数式,数学表达式中不含有时间变量。第4页/共95页 动态数学模型:描述动态系统瞬态与过渡态特性的模型。也可定义为描述实际系统各物理量随时间演化的数学表达式。动态系统的输出信号不仅取决于同时刻的激励信号,而且与它过去的工作状态有关。微分方程或差分方程常用作动态数学模型。对于给定的动态系统,数学模型不是唯一的。工程上常用的数学模型包括:微分方程,传

4、递函数和状态方程。对于线性系统,它们之间是等价的。针对具体问题,选择不同的数学模型。建立数学模型是控制系统分析与设计中最重要的工作!第5页/共95页 质量-弹簧-阻尼系统 机电控制系统的受控对象是机械系统。在机械系统中,有些构件具有较大的惯性和刚度,有些构件则惯性较小、柔度较大。在集中参数法中,我们将前一类构件的弹性忽略将其视为质量块,而把后一类构件的惯性忽略而视为无质量的弹簧。这样受控对象的机械系统可抽象为质量-弹簧-阻尼系统。第6页/共95页第7页/共95页第8页/共95页见光盘课件(第二章第一节)第9页/共95页有源电路网络第10页/共95页2.2 数学模型的线性化线性模型:满足叠加性与

5、齐次性,用来描述线性系统。叠加性指当几个激励信号同时作用于系统时,总的输出响应等于每个激励单独作用所产生的响应之和。齐次性指当输入信号乘以某常数时,响应也倍乘相同的常数。即若 为线性系统,则 非线性模型:不满足叠加性或齐次性,用非线性方程表示。用来描述非线性系统。第11页/共95页 线性化方法:一般可在系统工作平衡点附近,对非线性方程采用台劳级数展开进行线性化,略去高阶项,保留一阶项,就可得到近似的线性模型。由于反馈系统不允许出现大的偏差,因此,这种线性化方法对于闭环控制系统具有实际意义。第12页/共95页阀控液压缸例第13页/共95页第14页/共95页第15页/共95页线性化方法:假设变量相

6、对于某一工作状态(平衡点)偏差很小。设系统的函数关系为简写为 。如果系统的工作平衡点为 ,则方程可以在 点附近台劳展开 如果 很小,可以忽略其高阶项,因此上述方程可写成增量方程形式 其中,第16页/共95页2.3 拉氏变换及反变换Laplace(拉普拉斯)变换是描述、分析连续、线性、时不变系统的重要工具!定义 拉氏变换可理解为广义单边傅立叶变换。傅氏变换建立了时域和频域间的联系,而拉氏变换建立了时域和复频域间的联系。见光盘课件(第一章第二节)第17页/共95页简单函数的拉氏变换正弦函数sintsint 1 1(t t)和余弦函数costcost 1 1(t t)的拉氏变换第18页/共95页 第

7、19页/共95页 的拉氏变换 证:第20页/共95页周期函数的象函数 设函数x(t)x(t)是以T T为周期的周期函数,即x(t+T)=x(t)x(t+T)=x(t),则证:第21页/共95页 令 则第22页/共95页 拉氏反变换公式为 简写为第23页/共95页在一般机电控制系统中,通常遇到如下形式的有理分式 其中,使分母为零的s s值称为极点,使分子为零的s s值称为零点。则有其中,第24页/共95页第25页/共95页式中,是常值,为极点处的留数,可由下式求得 将式(2.192.19)拉氏反变换,可利用拉氏变换表得第26页/共95页例 试求 的拉氏反变换。解:第27页/共95页第28页/共9

8、5页含共轭复数极点情况第29页/共95页式中,是常值,可由以下步骤求得将上式两边乘 ,两边同时令 (或同时令 ),得 (2.212.21)分别令式(2.212.21)两边实部、虚部对应相等,即可求得 。可通过配方,化成正弦、余弦象函数的形式,然后求其反变换。第30页/共95页例 试求 的拉氏反变换。解:将该式两边同乘 ,并令 ,第31页/共95页即 解 得 又第32页/共95页故 则第33页/共95页含共轭复根的情况,也可用第一种情况的方法。值得注意的是,此时共轭复根相应两个分式的分子 和 是共轭复数,只要求出其中一个值,另一个即可得到。例 求 的拉氏反变换。解:第34页/共95页则则则第35

9、页/共95页含多重极点的情况 第36页/共95页式中,可由下式求得 第37页/共95页 利用拉氏变换解常系数线性微分方程 例 解方程 ,其中,解:将方程两边取拉氏变换,得 将 代入,并整理,得 所以 第38页/共95页2.4 2.4 传递函数以及典型环节的传递函数 传递函数是在拉氏变换的基础上,以系统本身的参数描述的线性定常系统输入量与输出量的关系式,它表达了系统内在的固有特性,而与输入量或驱动函数无关。它可以是无量纲的,也可以是有量纲的,视系统的输入、输出量而定,它包含着联系输入量与输出量所需要的量纲。它不能表明系统的物理特性和物理结构,许多物理性质不同的系统,有着相同的传递函数,正如一些不

10、同的物理现象可以用相同的微分方程描述一样。见光盘课件(第二章第三节)第39页/共95页表2-2 2-2 等效弹性刚度说明第40页/共95页表2-2 2-2 复阻抗说明第41页/共95页 比例环节 (其中k k为常数)第42页/共95页 比例环节 (其中k k为常数)第43页/共95页 一阶惯性环节 (其中T T为时间常数)第44页/共95页 一阶惯性环节 (其中T T为时间常数)第45页/共95页 积分环节 (其中k k为常数)第46页/共95页 二 阶 振 荡 环 节 (其中 0 011)第47页/共95页第48页/共95页 二 阶 振 荡 环 节 (其中 0 011)第49页/共95页第5

11、0页/共95页 见光盘课件(第二章第四、五节)第51页/共95页 2.6 2.6 系统信号流图及梅逊公式信号流图中的网络是由一些定向线段将一些节点连接起来组成的。其中,节点用来表示变量或信号,输入节点也称源点,输出节点也称阱点,混合节点是指既有输入又有输出的节点;定向线段称为支路,其上的箭头表明信号的流向,各支路上还标明了增益,即支路上的传递函数;从输入节点到输出节点的通路上通过任何节点不多于一次的通路称为前向通路,起点与终点重合且与任何节点相交不多于一次的通路称为回路。第52页/共95页从输入变量到输出变量的系统传递函数可由梅逊公式求得。梅逊公式可表示为 第k k条前向通路的传递函数;第k

12、k条前向通路特征式的余因子,即对于流图的特征式,将与第k k条前向通路相接触的回路传递函数代以零值,余下的即为 。第53页/共95页例:第54页/共95页 2.7 2.7 受控机械对象数学模型 一般整个机械传动系统的特性可以用若干相互耦合的质量弹簧阻尼系统表示。其中每部分的动力学特性可表示为如下传递函数 第55页/共95页 为了得到良好的闭环机电系统性能,对于受控机械对象,应注意以下方面:(1 1)高谐振频率 一般整个机械传动系统的特性可以用若干相互耦合的质量弹簧阻尼系统表示。为了满足机电系统的高动态特性,机械传动的各个分系统的谐振频率均应远高于机电系统的设计截止频率。各机械传动分系统谐振频率

13、最好相互错开。另外,对于可控硅驱动装置,应注意机械传动系统谐振频率不能与控制装置的脉冲频率接近,否则将产生机械噪声并加速机械部件的磨损。第56页/共95页 (2 2)高刚度 在闭环系统中,低刚度往往造成稳定性下降,与摩擦一起,造成反转误差,引起系统在被控位置附近振荡。在刚度的计算中,需要注意机械传动部件的串并联关系。对于串联部件(例如在同一根轴上),总刚度k k为 (2.36)(2.36)式中,各分部件刚度。第57页/共95页对于并联部件(例如同一支承上有几个轴承),总刚度k k为 (2.37)(2.37)式中,各分部件刚度。从低速轴上的刚度折算到高速轴上时,等效的刚度k k为 (2.38)(

14、2.38)式中,i i 升速比。第58页/共95页 (3 3)适当阻尼 机械传动分系统的阻尼比为 (2.39)(2.39)一般电机驱动装置从驱动电压到输出转速的数学模型是二阶振荡环节,存在所需要的机械传动环节较合适的阻尼比。增加机械传动阻尼比往往引起摩擦力增加,进而产生摩擦反转误差的不利影响。另一方面,为了衰减机械振动和颤振现象,又需要增加机械传动阻尼比。针对以上矛盾的要求,根据经验,适当的机械传动阻尼比可选为0.10.1 0.20.2。第59页/共95页 (4 4)低转动惯量 快速性是现代机电一体化系统的显著特点。在驱动力矩一定的前提下,转动惯量越小,加速性能越好。机械传动部件对于电动机等驱

15、动装置是负载,通常将其折算成电动机转轴上的转动惯量来评价它对快速性的影响。第60页/共95页如图齿轮传动机构,主动轮由电动机驱动,从动轮通过轴带动负载转动。假设电动机轴上的转矩为 ,转角为 ,转动惯量为 ;从动轴上的负载转矩为 ,转角为 ,转动惯量为 ,阻尼系数为 ;主动轮和从动轮的齿数分别为 和 ,速比 。,第61页/共95页依题意,有第62页/共95页消去中间变量,可得 (2.45)(2.45)(2.462.46)其中,方程(2.452.45)是折合到主动轴的关系式,方程(2.462.46)是折合到从动轴的关系式。第63页/共95页当折合到主动轴上时,从动轴上的转动惯量和阻尼系数都要除以传

16、动比的平方,负载转矩除以传动比。因此,减速传动时,相当于电动机带的负载变小了,也可以说电动机带负载的力矩增大了。反之,当折合到从动轴上时,主动轴上的转动惯量和阻尼系数都要乘以传动比的平方,输入转矩乘以传动比。第64页/共95页将方程(2.452.45)和(2.462.46)进行拉氏变换后,可得第65页/共95页当从动轴弹性刚度为时,可列写主动轴和从动轴的动力学方程为第66页/共95页可见,当折合到主动轴上时,从动轴上的转动惯量和阻尼系数以及刚度都要除以传动比的平方,负载转矩除以传动比,从动轴的转角则乘以传动比。反之,当折合到从动轴上时,主动轴上的转动惯量和阻尼系数以及刚度都要乘以传动比的平方,

17、输入转矩乘以传动比,主动轴的转角则除以传动比。第67页/共95页联立求解代数方程组(2-512-51)和(2-522-52),可得 若 ,变为刚性传动,前面推导的完全刚性情况。第68页/共95页丝杠螺母副传动有类似的结果。如下图,设电动机驱动转矩为 ,转角为 ,电动机转子与丝杠一起的转动惯量为 ;设工作台连同工件一起的质量为m m,位移为x x,负载阻力为f f,工作台与导轨之间的粘性阻尼系数为D D,基本导程为 。mx D f m第69页/共95页根据上图,可得 (2.552.55)(2.562.56)式中,丝杠螺母副传动比定义为第70页/共95页若丝杠弹性刚度为,则有第71页/共95页上述

18、结果可以推广到更加复杂的机械传动系统。任何机械传动系统,经过简化,都可以得到类似上述方程所描写的动态数学模型。由这些方程可以看出,若阻尼系数D D比较小,分母方括号中将有一对共轭复根。不考虑负载力(或转矩),由输入转矩到主动轴转角的传递函数,由于分子和分母多项式都有一对数值相近的共轭复根,可以作为一对偶极子相消,因而,可以近似为二阶系统;而由输入转矩到工作台位移的传递函数,由于分子为常数项,因而是一个四阶系统,且有一对共轭复根。第72页/共95页进给传动链例第73页/共95页进给传动链例第74页/共95页进给传动链例第75页/共95页进给传动链例第76页/共95页进给传动链例第77页/共95页

19、进给传动链例第78页/共95页进给传动链例第79页/共95页进给传动链例第80页/共95页 状态空间方程 伴随计算机的发展,以状态空间理论为基础的现代控制理论的数学模型采用状态空间方程,以时域分析为主,着眼于系统的状态及其内部联系,研究的机电控制系统扩展为多输入-多输出的时变系统。所谓状态方程是由系统状态变量构成的一阶微分方程组;状态变量是足以完全表征系统运动状态的最小个数的一组变量。状态变量相互独立但不唯一。第81页/共95页状态空间方程可表示成 (状态方程)(2.632.63)(输出方程)(2.64)(2.64)式中,n n维状态矢量;nnnn维系统状态系数矩阵;第82页/共95页 r r

20、维控制矢量;nrnr维系统控制系数矩阵;m m维 输 出 矢量;第83页/共95页 mnmn维输出状态系数矩阵;mrmr维输出控制系数矩阵;第84页/共95页 第85页/共95页例 如下图所示系统,和 分别为输入和输出电压。该系统可表示为如下微分方程组第86页/共95页即 也可表示为 第87页/共95页例:如下图所示系统,为输入力,为输出位移。该系统可表示为如下微分方程组 第88页/共95页第89页/共95页例:第90页/共95页设 ,之间的位移为 ,则整理,得第91页/共95页 第92页/共95页 第93页/共95页 本章作业(p67-p75)2-1,2-2,2-6(b),2-8,2-9(b),2-10(a),2-11(c),2-12(b),2-19选做:2-3,2-26(b)第94页/共95页感谢您的观看!第95页/共95页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > PPT文档

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁