《不等式的解法典型例题及详细答案.pdf》由会员分享,可在线阅读,更多相关《不等式的解法典型例题及详细答案.pdf(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 不等式的解法典型例题及详细答案 文件排版存档编号:UYTR-OUPT28-KBNTL98-UYNN208 不等式的解法典型例题【例 1】(x+4)(x+5)2(2-x)30【例 2】解下列不等式:【例 3】解下列不等式【例 4】解下列不等式:【例 5】|x2-4|x+2【例 6】解不等式1)123(log2122xxx 不等式典型例题参考答案【例 1】(x+4)(x+5)2(2-x)30【分析】如果多项式 f(x)可分解为 n 个一次式的积,则一元高次不等式 f(x)0(或 f(x)0)可用“区间法”求解,但要注意处理好有重根的情况 原不等式等价于(x+4)(x+5)2(x-2)30 原不等
2、式解集为x|x-5 或-5x-4 或 x2【说明】用“穿针引线法”解不等式时应注意:各一次项中 x 的系数必为正;但注意“奇穿偶不穿”其法如图(52)【例 2】解下列不等式:解:(1)原不等式等价于 用“穿针引线法”原不等式解集为(-,-2)-1,2)(2)【例 3】解下列不等式 解:(1)原不等式等价于 原不等式解集为x|x5(2)原不等式等价于【说明】解无理不等式需从两方面考虑:一是开数大于或等于零;二是要注意只有两边都是非不变【例 4】解下列不等式:解:(1)原不等式等价于 令 2x=t(t0),则原不等式可化为(2)原不等式等价于 原不等式解集为(-1,23,6)【例 5】|x2-4|x+2 解:原不等式等价于-(x+2)x2-4x+2 故原不等式解集为(1,3)这是解含绝对值不等式常用方法【例 6】解不等式1)123(log2122xxx 解:原不等式等价于(1)当 a1 时,式等价于 (2)当 0a1 时,等价于