《材料力学性能复习总结.pdf》由会员分享,可在线阅读,更多相关《材料力学性能复习总结.pdf(35页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、材料力学性能复习总结材料力学性能复习总结绪论绪论弹性:指材料在外力作用下保持和恢复固有形状和尺寸的能力。弹性:指材料在外力作用下保持和恢复固有形状和尺寸的能力。塑性:材料在外力作用下发生不可逆的永久变形的能力。塑性:材料在外力作用下发生不可逆的永久变形的能力。刚度:材料在受力时抵抗弹性变形的能力。刚度:材料在受力时抵抗弹性变形的能力。强度:材料对变形和断裂的抗力。强度:材料对变形和断裂的抗力。韧性:指材料在断裂前吸收塑性变形和断裂功的能力。韧性:指材料在断裂前吸收塑性变形和断裂功的能力。硬度:材料的软硬程度。硬度:材料的软硬程度。耐磨性:材料抵抗磨损的能力。耐磨性:材料抵抗磨损的能力。寿命:指
2、材料在外力的长期或重复作用下抵抗损伤和失效的能。寿命:指材料在外力的长期或重复作用下抵抗损伤和失效的能。材料的力学性能的取决因素:内因材料的力学性能的取决因素:内因化学成分、组织结构、残余应力、表面和内部的缺陷化学成分、组织结构、残余应力、表面和内部的缺陷等;外因等;外因载荷的性质、应力状态、工作温度、环境介质等条件的变化。载荷的性质、应力状态、工作温度、环境介质等条件的变化。第一章第一章材料在单向静拉伸载荷下的力学性能材料在单向静拉伸载荷下的力学性能1.11.1拉伸力伸长曲线和应力应变曲线拉伸力伸长曲线和应力应变曲线应力应变曲线应力应变曲线退火低碳钢在拉伸力作用下的力学行为可分为弹性变形、不
3、均匀屈服塑性变形、均匀塑退火低碳钢在拉伸力作用下的力学行为可分为弹性变形、不均匀屈服塑性变形、均匀塑性变形和不均匀集中塑性变形和断裂几个阶段。性变形和不均匀集中塑性变形和断裂几个阶段。弹性变形阶段:弹性变形阶段:曲线的起始部分,曲线的起始部分,图中的图中的 oaoa 段。段。多数情况下呈直线形式,符合虎克定律。多数情况下呈直线形式,符合虎克定律。屈服阶段:超出弹性变形范围之后,有的材料屈服阶段:超出弹性变形范围之后,有的材料在塑性变形初期产生明显的塑性流动。此时,在外在塑性变形初期产生明显的塑性流动。此时,在外力不增加或增加很小或略有降低的情况下,变形继力不增加或增加很小或略有降低的情况下,变
4、形继续产生,拉伸图上出现平台或呈锯齿状,如图中的续产生,拉伸图上出现平台或呈锯齿状,如图中的abab 段。段。均匀塑性变形阶段:屈服后,欲继续变形,必均匀塑性变形阶段:屈服后,欲继续变形,必须不断增加载荷,此阶段的变形是均匀的,直到曲须不断增加载荷,此阶段的变形是均匀的,直到曲线达到最高点,均匀变形结束,如图中的线达到最高点,均匀变形结束,如图中的 bcbc 段。段。不均匀塑性变形阶段:从试样承受的最大应力点开始直到断裂点为止,如图中的不均匀塑性变形阶段:从试样承受的最大应力点开始直到断裂点为止,如图中的 cdcd 段。在段。在此阶段,随变形增大,载荷不断下降,产生大量不均匀变形,且集中在颈缩
5、处,最后载荷达到断此阶段,随变形增大,载荷不断下降,产生大量不均匀变形,且集中在颈缩处,最后载荷达到断裂载荷时,试样断裂。裂载荷时,试样断裂。-1-1-退火低碳钢应力应变曲线退火低碳钢应力应变曲线弹性模量弹性模量 E E:应力应变曲线与横轴夹角的大小表示材料对弹性变形的抗力,用弹性模量:应力应变曲线与横轴夹角的大小表示材料对弹性变形的抗力,用弹性模量 E E表示。表示。塑性材料应力应变曲线塑性材料应力应变曲线(a a)弹性弹塑性型:)弹性弹塑性型:OaOa 为弹性变形阶段,在为弹性变形阶段,在 a a 点偏离直线关系,进入弹塑性阶段,开点偏离直线关系,进入弹塑性阶段,开始发生塑性变形,开始发生
6、塑性变形的应力称为屈服点,屈服点以后的变形包括弹性变形和塑性始发生塑性变形,开始发生塑性变形的应力称为屈服点,屈服点以后的变形包括弹性变形和塑性变形。在变形。在 mm 点卸载,应力沿点卸载,应力沿 mnmn 降至零,发生加工硬化。降至零,发生加工硬化。(b b)弹性)弹性-不均匀塑性不均匀塑性-均匀塑性型:与前者不同在于出现了明显的屈服点均匀塑性型:与前者不同在于出现了明显的屈服点 aaaa,有时呈屈服,有时呈屈服平台状,有时呈齿状。应变约平台状,有时呈齿状。应变约 1%3%1%3%。退火低碳钢和某些有色金属具有此行为。退火低碳钢和某些有色金属具有此行为。(c c)弹性弹性-均匀塑性型:均匀塑
7、性型:未出现颈缩前的均匀变形过程中发生断裂。未出现颈缩前的均匀变形过程中发生断裂。主要是许多金属及合金、主要是许多金属及合金、部分陶瓷和非晶态高聚物具有此种曲线。部分陶瓷和非晶态高聚物具有此种曲线。(d d)弹性)弹性-不均匀塑性型:形变强化过程中出现多次局部失稳,其塑性变形方式通常是孪生不均匀塑性型:形变强化过程中出现多次局部失稳,其塑性变形方式通常是孪生而不是滑移。当孪生速率超过试验机夹头运动速度时,载荷会突然松弛而呈现锯齿形的曲线。某而不是滑移。当孪生速率超过试验机夹头运动速度时,载荷会突然松弛而呈现锯齿形的曲线。某些低溶质固溶体铝合金及含杂质的铁合金具有此行为。些低溶质固溶体铝合金及含
8、杂质的铁合金具有此行为。加工硬化:材料经历一定的塑性变形后,其屈服应力升高的现象称为应变强化或加工硬化。加工硬化:材料经历一定的塑性变形后,其屈服应力升高的现象称为应变强化或加工硬化。颈缩:材料经均匀形变后出现集中变形的现象称为颈缩。颈缩:材料经均匀形变后出现集中变形的现象称为颈缩。1.21.2弹性变形弹性变形材料受外力作用发生尺寸和形状的变化,称为变形。外力去除后,随之消失的变形为弹性变材料受外力作用发生尺寸和形状的变化,称为变形。外力去除后,随之消失的变形为弹性变形,剩余的(即永久性的)变形为塑性变形。形,剩余的(即永久性的)变形为塑性变形。弹性变形的重要特征是其可逆性,即受力作用后产生变
9、形,卸除载荷后,变形消失。弹性变形的重要特征是其可逆性,即受力作用后产生变形,卸除载荷后,变形消失。曲线曲线 1 1:两原子间的引力:两原子间的引力曲线曲线 2 2:两原子间的斥力:两原子间的斥力曲线曲线 3 3:两原子之间的作用力:两原子之间的作用力当原子间相互平衡力受外力而受到破坏时,原子位当原子间相互平衡力受外力而受到破坏时,原子位置相应调整,产生位移。而位移总和在宏观上表现为变置相应调整,产生位移。而位移总和在宏观上表现为变形。形。外力去除后,原子依靠之间的作用力又回到原来平外力去除后,原子依靠之间的作用力又回到原来平衡位置,位移消失,宏观变形消失。衡位置,位移消失,宏观变形消失。弹性
10、模量弹性模量 E E:表征材料抵抗正应变的能力。在单向受力状态下:表征材料抵抗正应变的能力。在单向受力状态下-2-2-切变模量切变模量 G G:表征材料抵抗剪切变形的能力。在纯剪切应力状态下:表征材料抵抗剪切变形的能力。在纯剪切应力状态下泊松比泊松比 :反映材料受力后横向正应变与受力方向上正应变之比。单向受力状态下:反映材料受力后横向正应变与受力方向上正应变之比。单向受力状态下y x体积弹性模量体积弹性模量 K K:表示物体在三向压缩下,表示物体在三向压缩下,压强压强 p p 与体积变化率与体积变化率 V/VV/V 之间的线性比例关系。之间的线性比例关系。刚度:工程上弹性模量为称为材料的刚度,
11、表征金属材料对弹性变形的抗力,其值越大,刚度:工程上弹性模量为称为材料的刚度,表征金属材料对弹性变形的抗力,其值越大,则在相同的应力状态下产生的弹性变形量越小。则在相同的应力状态下产生的弹性变形量越小。弹性比功:弹性比功又称弹性比能、弹性比功:弹性比功又称弹性比能、应变比能,应变比能,表示金属材料吸表示金属材料吸收弹性变形功而不发生永久变形的能力。收弹性变形功而不发生永久变形的能力。金属拉伸时的弹性比功用应金属拉伸时的弹性比功用应力应变曲线下影线的面积表示,即力应变曲线下影线的面积表示,即式中,式中,a ae e为弹性比功,为弹性比功,e e为弹性极限(材料由弹性变形过渡为弹性极限(材料由弹性
12、变形过渡到弹塑性变形时的应力)到弹塑性变形时的应力);e e为最大弹性应变。为最大弹性应变。在应力作用下应变不断随时间而发展的行为,在应力作用下应变不断随时间而发展的行为,以及应力去除后应以及应力去除后应变逐渐恢复的现象都统称为弹性后效。变逐渐恢复的现象都统称为弹性后效。实际金属在外力作用下产生弹性变形,开始时沿实际金属在外力作用下产生弹性变形,开始时沿 OAOA 线产生瞬时线产生瞬时弹性应变弹性应变 OCOC,如果载荷保持不变,如果载荷保持不变,还产生随时间延长而逐渐增加的应还产生随时间延长而逐渐增加的应变变 CHCH。这种在加载状态下产生的滞弹性变形称为正弹性后效。这种在加载状态下产生的滞
13、弹性变形称为正弹性后效。卸载时,卸载时,延延 BDBD 线只有应变线只有应变 DHDH 立即消失,而应变立即消失,而应变 ODOD 是卸载后随时间延长才是卸载后随时间延长才缓慢消失的,这种在卸载后产生的滞弹性变形称为反弹性后效。缓慢消失的,这种在卸载后产生的滞弹性变形称为反弹性后效。弹性滞后环:弹性滞后环:弹性变形时因应变滞后于弹性变形时因应变滞后于外加应力,使加载线和卸载线不重合而形成的外加应力,使加载线和卸载线不重合而形成的回线称为弹性滞后环。回线称为弹性滞后环。存在弹性滞后环的现象说明,加载时金属存在弹性滞后环的现象说明,加载时金属消耗的变形功大于卸载时金属恢复变形释放消耗的变形功大于卸
14、载时金属恢复变形释放出的功,环面积大小代表被金属吸收的那部分出的功,环面积大小代表被金属吸收的那部分功。功。交变循环载荷,加载速度慢交变循环载荷,加载速度慢交变循环载荷,加载速度快交变循环载荷,加载速度快滞后环的面积相当于金属在单向循环应力或交变循环应力作用下消耗不可逆能量的多少,滞后环的面积相当于金属在单向循环应力或交变循环应力作用下消耗不可逆能量的多少,即即表示金属吸收不可逆变形功的能力,成为金属的内耗,又称循环韧性。循环韧性是指在塑性区加表示金属吸收不可逆变形功的能力,成为金属的内耗,又称循环韧性。循环韧性是指在塑性区加载时材料吸收不可逆变形功的能力;内耗是指在弹性区加载时材料吸收不可逆
15、变形功的能力。一载时材料吸收不可逆变形功的能力;内耗是指在弹性区加载时材料吸收不可逆变形功的能力。一般这两个名词可以混用。般这两个名词可以混用。-3-3-包申格效应:金属材料经过预先加载产生少量塑性变形(残余包申格效应:金属材料经过预先加载产生少量塑性变形(残余应变为应变为 1%4%1%4%),卸载后同向加载,规定残余伸长应力(弹性极限或,卸载后同向加载,规定残余伸长应力(弹性极限或屈服强度)增加,反向加载时规定残余伸长应力降低的现象,称为包屈服强度)增加,反向加载时规定残余伸长应力降低的现象,称为包申格效应。申格效应。包申格效应产生的原因(位错理论)包申格效应产生的原因(位错理论):初次加载
16、变形时,位错源在:初次加载变形时,位错源在滑移面上产生的位错受阻,塞积后产生背应力,背应力反作用于位错滑移面上产生的位错受阻,塞积后产生背应力,背应力反作用于位错源,当背应力足够大时,可使位错源停止开动。预变形时位错的运动源,当背应力足够大时,可使位错源停止开动。预变形时位错的运动方向和背应力的方向相反。方向和背应力的方向相反。反向加载时位错运动的方向和背应力方向一致,反向加载时位错运动的方向和背应力方向一致,背应力帮助位错运动,背应力帮助位错运动,塑性变形相对容易。塑性变形相对容易。1.31.3塑性变形塑性变形塑性变形的方式:滑移和孪生。其中,滑移是金属材料在切应力作用下,位错沿滑移面和滑塑
17、性变形的方式:滑移和孪生。其中,滑移是金属材料在切应力作用下,位错沿滑移面和滑移方向运动而进行的切变过程,移方向运动而进行的切变过程,是最主要的变形机制。是最主要的变形机制。孪生也是金属材料在切应力作用下的一种孪生也是金属材料在切应力作用下的一种塑性变形方式,一般发生在低温形变或快速形变时,受晶体结构的影响较大塑性变形方式,一般发生在低温形变或快速形变时,受晶体结构的影响较大fccbcchcpfccbcchcp。塑性变形的特点塑性变形的特点1 1、各晶粒塑性变形的不同时性和不均匀性:多晶体试样受到外力作用后,大部分区域尚处、各晶粒塑性变形的不同时性和不均匀性:多晶体试样受到外力作用后,大部分区
18、域尚处在弹性变形范围内,塑性变形首先在个别取向有利的晶粒内,塑性变形不可能在不同晶粒中同时在弹性变形范围内,塑性变形首先在个别取向有利的晶粒内,塑性变形不可能在不同晶粒中同时开始;一个晶粒的塑性变形必然受到相邻不同位向晶粒的限制,由于各晶粒的位向差异,这种限开始;一个晶粒的塑性变形必然受到相邻不同位向晶粒的限制,由于各晶粒的位向差异,这种限制在变形晶粒的不同区域上是不同的,在同一晶粒内的不同区域的变形量也是不同的。制在变形晶粒的不同区域上是不同的,在同一晶粒内的不同区域的变形量也是不同的。2 2、各晶粒塑性变形的相互制约与协调:多晶体作为一个整体,不允许晶粒仅在一个滑移系、各晶粒塑性变形的相互
19、制约与协调:多晶体作为一个整体,不允许晶粒仅在一个滑移系中变形,否则将造成晶界开裂。五个独立的滑移系开动,才能确保产生任何方向不受约束的塑性中变形,否则将造成晶界开裂。五个独立的滑移系开动,才能确保产生任何方向不受约束的塑性变形。变形。3 3、塑性变形后金属的晶格发生点阵畸变,储存能量,产生内应力。、塑性变形后金属的晶格发生点阵畸变,储存能量,产生内应力。4 4、塑性应变量提高,金属强度增大,产生加工硬化。、塑性应变量提高,金属强度增大,产生加工硬化。屈服:受力试样中,应力达到某一特定值后,开始大规模塑性变形的现象称为屈服。屈服:受力试样中,应力达到某一特定值后,开始大规模塑性变形的现象称为屈
20、服。呈现屈服现象的金属材料拉伸时,试样在外力不增加仍能继续伸长时的应力称为屈服点;呈现屈服现象的金属材料拉伸时,试样在外力不增加仍能继续伸长时的应力称为屈服点;试试样发生屈服而首次下降前的最大应力称为上屈服点,样发生屈服而首次下降前的最大应力称为上屈服点,即为即为当不计初始瞬时效应当不计初始瞬时效应(指在屈服过(指在屈服过susu;sl sl。程中实验为第一次发生下降)时屈服阶段中的最小应力称为下屈服点,记为程中实验为第一次发生下降)时屈服阶段中的最小应力称为下屈服点,记为屈服现象的本质(屈服现象的本质(不确定)不确定):金属材料在拉伸试验时产生的屈服现象是其开始产生宏观塑性:金属材料在拉伸试
21、验时产生的屈服现象是其开始产生宏观塑性变形的一种标志。参考拉伸力伸长曲线,材料从弹性变形阶段向塑性变形阶段过渡是明显的,变形的一种标志。参考拉伸力伸长曲线,材料从弹性变形阶段向塑性变形阶段过渡是明显的,-4-4-表现在试验过程中外力不增加试样仍能继续伸长或外力增加到一定数值时突然下降,随后,表现在试验过程中外力不增加试样仍能继续伸长或外力增加到一定数值时突然下降,随后,在外在外力不增加或上下波动情况下,试样继续伸长变形,这便是屈服现象。力不增加或上下波动情况下,试样继续伸长变形,这便是屈服现象。金属材料一般是多晶体合金,往往具有多相组织,因此,讨论影响屈服强度的因素,必须注金属材料一般是多晶体
22、合金,往往具有多相组织,因此,讨论影响屈服强度的因素,必须注意以下几点:意以下几点:屈服变形是位错增殖和运动的结果;屈服变形是位错增殖和运动的结果;实际金属材料的力学行为是由许多晶粒综实际金属材料的力学行为是由许多晶粒综合作用的结果;合作用的结果;各种外界因素通过影响位错运动而影响屈服强度。各种外界因素通过影响位错运动而影响屈服强度。-5-5-1-1-材料在塑性变形过程中,也在产生微孔,微孔的产生与发展,导致材料中微裂纹的形成与长材料在塑性变形过程中,也在产生微孔,微孔的产生与发展,导致材料中微裂纹的形成与长大,这种损伤达到临界状态时,裂纹失稳,实现最终的断裂。大,这种损伤达到临界状态时,裂纹
23、失稳,实现最终的断裂。塑性变形裂纹的形成裂纹扩展断裂塑性变形裂纹的形成裂纹扩展断裂韧性断裂与脆性断裂韧性断裂与脆性断裂断裂前不发生明显塑性变形断裂前不发生明显塑性变形脆性断裂;断裂前发生明显塑性变形脆性断裂;断裂前发生明显塑性变形韧性断裂。韧性断裂。脆性断裂所需的能量:分开原子脆性断裂所需的能量:分开原子+新表面的表面能;韧性断裂所需的能量:分开原子新表面的表面能;韧性断裂所需的能量:分开原子+新表面新表面的表面能的表面能+塑性变形消耗的能量(远大于前两者之和)塑性变形消耗的能量(远大于前两者之和)韧性断裂是金属材料断裂前产生明显宏观塑性变形的断裂。韧性断裂是金属材料断裂前产生明显宏观塑性变形
24、的断裂。韧性断裂宏观断口形态呈杯锥状,由纤维区、放射区和剪切唇三个区域组成。韧性断裂宏观断口形态呈杯锥状,由纤维区、放射区和剪切唇三个区域组成。纤维区:光滑圆柱试样受拉伸力作用,产生颈缩时试样的应力状态也由单向变为三向,且中纤维区:光滑圆柱试样受拉伸力作用,产生颈缩时试样的应力状态也由单向变为三向,且中心区轴向应力最大。在中心三向拉应力作用下,塑性变形难于进行,致使试样中各部分的夹杂物心区轴向应力最大。在中心三向拉应力作用下,塑性变形难于进行,致使试样中各部分的夹杂物或第二相质点本身碎裂,或使夹杂物质点与基体界面脱离而形成微孔,微孔不断长大和聚合就形或第二相质点本身碎裂,或使夹杂物质点与基体界
25、面脱离而形成微孔,微孔不断长大和聚合就形成显微裂纹。显微裂纹形成、扩展过程重复进行就形成锯齿状的纤维区。成显微裂纹。显微裂纹形成、扩展过程重复进行就形成锯齿状的纤维区。放射区:环状纤维区发展到一定尺寸(临界裂纹尺寸)后,裂纹开始快速扩展(失稳扩展)放射区:环状纤维区发展到一定尺寸(临界裂纹尺寸)后,裂纹开始快速扩展(失稳扩展)而形成放射区。放射区是裂纹作快速低能撕裂而形成的,有放射线花样特征,放射线平行于裂纹而形成放射区。放射区是裂纹作快速低能撕裂而形成的,有放射线花样特征,放射线平行于裂纹扩展方向而垂直于裂纹前端(每一瞬间)的轮廓线,并逆指向裂纹源。扩展方向而垂直于裂纹前端(每一瞬间)的轮廓
26、线,并逆指向裂纹源。剪切唇:放射区形成后,试样承载面积只剩下最外侧的环状面积,最后由拉伸应力的分切应剪切唇:放射区形成后,试样承载面积只剩下最外侧的环状面积,最后由拉伸应力的分切应力所切断,形成与拉伸轴呈力所切断,形成与拉伸轴呈 4545 的杯状或锥状剪切唇。的杯状或锥状剪切唇。脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。脆性断裂的断裂面一般与正应力垂直,断口平齐而光亮,常呈放射状或结晶状。大。脆性断裂的断裂面一般与正应力垂直,断口平齐而光亮,常呈放射状或结晶状。脆性断裂断口
27、的放射状花样脆性断裂断口的放射状花样脆性断裂断口的人字形花样脆性断裂断口的人字形花样圆柱形拉伸试样:断裂面与正应力垂直,断口平齐、光亮。断面上的放射状条纹汇聚于一个圆柱形拉伸试样:断裂面与正应力垂直,断口平齐、光亮。断面上的放射状条纹汇聚于一个中心,此中心区域就是裂纹源。中心,此中心区域就是裂纹源。-1-1-板状矩形截面拉伸试样:“人”字纹花样的放射方向与裂纹扩展方向平行,但其尖顶指向裂板状矩形截面拉伸试样:“人”字纹花样的放射方向与裂纹扩展方向平行,但其尖顶指向裂纹源。纹源。沿晶断裂与穿晶断裂沿晶断裂与穿晶断裂沿晶断裂:指裂纹在晶界上形成并沿晶界扩展的断裂形式,大多是脆性断裂。在多晶体变形沿
28、晶断裂:指裂纹在晶界上形成并沿晶界扩展的断裂形式,大多是脆性断裂。在多晶体变形中,晶界起协调相邻晶粒变形的作用,当晶界受到损伤,其变形能力被消弱,不足以协调相邻晶中,晶界起协调相邻晶粒变形的作用,当晶界受到损伤,其变形能力被消弱,不足以协调相邻晶粒的变形时,便形成晶界断裂。粒的变形时,便形成晶界断裂。断裂机制:断裂机制:晶界由脆性相析出(如过共析钢中二次渗碳体析出)晶界由脆性相析出(如过共析钢中二次渗碳体析出);高温晶界变弱(加热高温晶界变弱(加热温度过高,温度过高,晶界熔化)晶界熔化);有害元素沿晶界富集有害元素沿晶界富集(合金钢的回火脆性)(合金钢的回火脆性);晶界上有弥散相析出晶界上有弥
29、散相析出(奥(奥氏体高锰钢固溶处理后再加热时沿晶界析出碳化物)氏体高锰钢固溶处理后再加热时沿晶界析出碳化物);腐蚀环境下晶界被腐蚀等原因使晶界脆腐蚀环境下晶界被腐蚀等原因使晶界脆化或弱化所致。化或弱化所致。断裂过程:沿晶断裂过程包括裂纹的形成与扩展。晶界受损的材料受力变形时,晶内的运动断裂过程:沿晶断裂过程包括裂纹的形成与扩展。晶界受损的材料受力变形时,晶内的运动位错受阻于晶界,在晶界处造成应力集中,当集中应力达到晶界强度时,便将晶界挤裂。位错受阻于晶界,在晶界处造成应力集中,当集中应力达到晶界强度时,便将晶界挤裂。断口形貌:断口形貌:沿晶断裂的性质取决于沿晶断裂的性质取决于g g(沿晶断裂应
30、力有关的常数)(沿晶断裂应力有关的常数)与屈服强度与屈服强度当当g g 生微孔型沿晶断裂,产生石状断口。生微孔型沿晶断裂,产生石状断口。穿晶断裂:指裂纹沿晶内(穿过晶粒)扩展的断裂。穿晶断裂可依据不同的微观断裂机制而穿晶断裂:指裂纹沿晶内(穿过晶粒)扩展的断裂。穿晶断裂可依据不同的微观断裂机制而具有不同的微观断口形貌特征,主要有解理、微孔聚集、准解理等。一般地,从宏观上看,穿晶具有不同的微观断口形貌特征,主要有解理、微孔聚集、准解理等。一般地,从宏观上看,穿晶断裂既可以是脆性断裂,也可以是韧性断裂。断裂既可以是脆性断裂,也可以是韧性断裂。纯剪切断裂与微孔聚集型断裂、解理断裂纯剪切断裂与微孔聚集
31、型断裂、解理断裂剪切断裂是金属材料在切应力作用下沿滑移面分离而造成的滑移面分离断裂,剪切断裂是金属材料在切应力作用下沿滑移面分离而造成的滑移面分离断裂,一般是韧性断一般是韧性断裂,分为纯剪切断裂和微孔聚集型断裂。其中,纯剪切断裂主要在纯金属尤其是在单晶体金属中裂,分为纯剪切断裂和微孔聚集型断裂。其中,纯剪切断裂主要在纯金属尤其是在单晶体金属中产生,其断口呈锋利的楔形或刀尖形,这是纯粹由滑移流变所造成的断裂。微孔聚集型断裂是通产生,其断口呈锋利的楔形或刀尖形,这是纯粹由滑移流变所造成的断裂。微孔聚集型断裂是通过微孔形核、长大聚合而导致材料分离的,常用金属材料一般均产生这类性质的断裂。过微孔形核、
32、长大聚合而导致材料分离的,常用金属材料一般均产生这类性质的断裂。微孔聚集型断裂的断口形貌为韧窝花样。微孔聚集型断裂的断口形貌为韧窝花样。在每一个韧窝内都含有一个第二相质点或者折断的在每一个韧窝内都含有一个第二相质点或者折断的夹杂物或者夹杂物颗粒,材料中的非金属夹杂物或第二相或其他脆性相颗粒是微孔形成的核心。夹杂物或者夹杂物颗粒,材料中的非金属夹杂物或第二相或其他脆性相颗粒是微孔形成的核心。韧窝断口就是微孔开裂后继续长大和连接的结果。韧窝断口就是微孔开裂后继续长大和连接的结果。韧窝形成过程:韧窝形成过程:韧窝的形成与异相粒子有关,韧窝的形成与异相粒子有关,在外力作用下产生塑性变在外力作用下产生塑
33、性变-2-2-形时,异相阻碍基体滑移,便在异相与基体滑移面交界处造成应力集中,当应力集中达到异相与形时,异相阻碍基体滑移,便在异相与基体滑移面交界处造成应力集中,当应力集中达到异相与基体界面结合强度或异相本身强度时,基体界面结合强度或异相本身强度时,会使二者界面脱离或异相自身断裂,会使二者界面脱离或异相自身断裂,从而形成裂纹从而形成裂纹(微孔)(微孔),并不断扩大,最后使夹杂物之间基体金属产生“内颈缩”,当颈缩达到一定程度后基体金属被撕并不断扩大,最后使夹杂物之间基体金属产生“内颈缩”,当颈缩达到一定程度后基体金属被撕裂或剪切断裂,使空洞连接,从而形成韧窝断口形貌。裂或剪切断裂,使空洞连接,从
34、而形成韧窝断口形貌。影响韧窝形成的因素:韧窝的形成位置、形状、大小和深浅受很多因素影响,大致归纳起来影响韧窝形成的因素:韧窝的形成位置、形状、大小和深浅受很多因素影响,大致归纳起来可分为三个方面可分为三个方面成核粒子的大小和分布;成核粒子的大小和分布;材料的塑性变形能力,尤其是形变硬化的能力;材料的塑性变形能力,尤其是形变硬化的能力;外部因素(包括应力大小、应力状态、温度、变形速度等)外部因素(包括应力大小、应力状态、温度、变形速度等)。韧窝形状主要取决于应力状态或应力与断面的相对取向,有等轴韧窝、拉长韧窝和撕裂韧窝韧窝形状主要取决于应力状态或应力与断面的相对取向,有等轴韧窝、拉长韧窝和撕裂韧
35、窝三类。三类。解理断裂:解理断裂:金属材料在一定条件下当外加正应力达到一定数值后以极快速率沿一定晶体学平金属材料在一定条件下当外加正应力达到一定数值后以极快速率沿一定晶体学平面产生的穿晶断裂,该晶体学平面为解理面。解理面一般是低指数晶面,如体心立方点阵金属的面产生的穿晶断裂,该晶体学平面为解理面。解理面一般是低指数晶面,如体心立方点阵金属的(100100)面和密排六方点阵金属的()面和密排六方点阵金属的(00010001)面。)面。一般地,解理断裂总是脆性断裂,而脆性断裂却不一定是解理断裂。一般地,解理断裂总是脆性断裂,而脆性断裂却不一定是解理断裂。解理断口的微观形貌特征:解理断口的微观形貌特
36、征:对于理想单晶体而言,对于理想单晶体而言,解理断裂可以是完全沿单一结晶面的分离,解理断裂可以是完全沿单一结晶面的分离,其解理断口是一毫无特征的理想平面。在实际晶体中,由于缺陷的存在,断裂并不是沿单一的结其解理断口是一毫无特征的理想平面。在实际晶体中,由于缺陷的存在,断裂并不是沿单一的结晶面解理,而是沿一组平行的结晶面解理,从而在不同高度上平行的解理面以解理台阶相连。在晶面解理,而是沿一组平行的结晶面解理,从而在不同高度上平行的解理面以解理台阶相连。在解理裂纹扩展过程中,台阶汇合形成“河流”花样,解理台阶、解理裂纹扩展过程中,台阶汇合形成“河流”花样,解理台阶、“河流”花样即为典型的解理断“河
37、流”花样即为典型的解理断口微观形貌特征。解理断裂的另一微观特征是存在舌状花样。口微观形貌特征。解理断裂的另一微观特征是存在舌状花样。第二章第二章材料在其他静载荷下的力学性能材料在其他静载荷下的力学性能2.12.1应力状态软性系数应力状态软性系数应力状态软性系数:应力状态软性系数:。越大,最大切应力分量越大,表示应力状态越软,材料越易于产生塑性变形;越大,最大切应力分量越大,表示应力状态越软,材料越易于产生塑性变形;越小,表越小,表示应力状态越硬,金属越不容易产生塑性变形而易于产生脆性断裂。示应力状态越硬,金属越不容易产生塑性变形而易于产生脆性断裂。2.22.2材料的压缩材料的压缩压缩试验的特点
38、压缩试验的特点1 1、单向压缩试验的应力状态软性系数、单向压缩试验的应力状态软性系数,比拉伸、扭转、弯曲的应力状态都软,所以单,比拉伸、扭转、弯曲的应力状态都软,所以单向压缩试验主要用于拉伸时呈脆性的金属材料力学性能的测定,向压缩试验主要用于拉伸时呈脆性的金属材料力学性能的测定,以显示这类材料在塑性状态下的以显示这类材料在塑性状态下的力学行为(图)力学行为(图)2 2、拉伸时塑性很好的材料在压缩时只发生压缩变形而不会断裂(图)、拉伸时塑性很好的材料在压缩时只发生压缩变形而不会断裂(图)-3-3-脆性材料在拉伸时产生垂直于载荷轴向的正断,塑性变形量几乎为零;而在压缩时除能产生脆性材料在拉伸时产生
39、垂直于载荷轴向的正断,塑性变形量几乎为零;而在压缩时除能产生一定的塑性变形外,常沿与轴线呈一定的塑性变形外,常沿与轴线呈 4545 方向产生断裂,具有切断特征。方向产生断裂,具有切断特征。2.32.3材料的弯曲材料的弯曲弯曲试验的特点弯曲试验的特点1 1、弯曲试验不存在拉伸试验时的试件偏斜(力的作用线不能准确通过拉伸试件的轴线而产、弯曲试验不存在拉伸试验时的试件偏斜(力的作用线不能准确通过拉伸试件的轴线而产生附加弯曲应力)对试验结果的影响,可以稳定地测定脆性材料和低塑性材料的抗弯强度,并能生附加弯曲应力)对试验结果的影响,可以稳定地测定脆性材料和低塑性材料的抗弯强度,并能由挠度明显地显示脆性和
40、低塑性材料的塑性。如铸铁、工具钢、陶瓷等。由挠度明显地显示脆性和低塑性材料的塑性。如铸铁、工具钢、陶瓷等。2 2、弯曲试验不能使塑性很好的材料破坏,不能测定其断裂弯曲强度,但可以比较一定弯曲、弯曲试验不能使塑性很好的材料破坏,不能测定其断裂弯曲强度,但可以比较一定弯曲条件下材料的塑性。条件下材料的塑性。3 3、弯曲试验时试样断面上的应力分布是不均匀的,表面应力最大,依此可以较灵敏地反映、弯曲试验时试样断面上的应力分布是不均匀的,表面应力最大,依此可以较灵敏地反映材料的表面缺陷,以检查材料的表面质量。材料的表面缺陷,以检查材料的表面质量。2.52.5材料的硬度材料的硬度硬度并不是金属独立的基本性
41、能,硬度并不是金属独立的基本性能,它是指金属在表面上的不大体积内抵抗变形或者破裂的能它是指金属在表面上的不大体积内抵抗变形或者破裂的能力。力。硬度的种类:硬度的种类:压入法压入法布氏硬度、洛氏、维氏、普氏等。表征材料的塑性变形抗力及应布氏硬度、洛氏、维氏、普氏等。表征材料的塑性变形抗力及应变硬化能力。应力状态软性系数最大,变硬化能力。应力状态软性系数最大,22,几乎所有的材料都能产生塑性变形。,几乎所有的材料都能产生塑性变形。刻划法刻划法莫氏硬度。表征材料对切断的抗力。莫氏硬度。表征材料对切断的抗力。回跳法肖氏硬度。表征金属弹性变形功的大小。同一回跳法肖氏硬度。表征金属弹性变形功的大小。同一类
42、方式的硬度可以换算;类方式的硬度可以换算;不同类方式则只能采用同一材料进行标定。不同类方式则只能采用同一材料进行标定。压入法是最主要的试验方法。压入法是最主要的试验方法。布氏硬度布氏硬度原理:在直径原理:在直径 D D 的钢珠上,加一定载荷的钢珠上,加一定载荷 p p,压在被试金属的表面,根据金属表面压痕的陷凹,压在被试金属的表面,根据金属表面压痕的陷凹面积面积 F F 计算出应力值,计算出应力值,以此值作为硬度值大小的计量指标。以此值作为硬度值大小的计量指标。布氏硬度值的符号以布氏硬度值的符号以 HBHB(kgf/mmkgf/mm2 2,)标记,则标记,则,式中,式中,t t 为压痕陷凹深度
43、;为压痕陷凹深度;为压痕陷凹面积。为压痕陷凹面积。在在 p p 和和 D D 一定时,一定时,t t 大,则说明材料的形变抗力低,硬度值小;反之则说明材料的形变抗力大,则说明材料的形变抗力低,硬度值小;反之则说明材料的形变抗力高,硬度值大。直观上,测量压痕直径比测量压痕陷凹深度要容易,由高,硬度值大。直观上,测量压痕直径比测量压痕陷凹深度要容易,由D D、d d、t t 三者之间的几何三者之间的几何关系可得:关系可得:。读数:载荷、压头直径、保持时间是布氏硬度试验的三要素。读数:载荷、压头直径、保持时间是布氏硬度试验的三要素。150HBS10/1000/30150HBS10/1000/30 表
44、示采用表示采用淬火钢球,压头直径淬火钢球,压头直径 10mm10mm,载荷,载荷 1000kg1000kg,载荷保持时间,载荷保持时间 30s30s 测得的布氏硬度值为测得的布氏硬度值为 150150;-4-4-200HBW10/3000/10200HBW10/3000/10 表示采用硬质合金钢球,压头直径表示采用硬质合金钢球,压头直径 10mm10mm,载荷,载荷 3000kg3000kg,载荷保持时间,载荷保持时间 10s10s测得的布氏硬度值为测得的布氏硬度值为 200200。优点:优点:压痕面积大,能反映金属表面较大体积范围内各组成相综合平均的性能数据;压痕面积大,能反映金属表面较大体
45、积范围内各组成相综合平均的性能数据;试试验数据稳定,重复性好,试验数据从小到大都可以统一起来;验数据稳定,重复性好,试验数据从小到大都可以统一起来;特别适宜于测得灰铸铁、轴承合特别适宜于测得灰铸铁、轴承合金、等具有粗大晶粒或粗大组成相的金属材料。金、等具有粗大晶粒或粗大组成相的金属材料。缺点:缺点:对于对于 450HB450HB 以上的硬材料,因钢球变形已很显著,影响所测数据的正确性,因此以上的硬材料,因钢球变形已很显著,影响所测数据的正确性,因此不能使用;不能使用;由于此法产生的压痕较大,故不宜于某些表面不允许有较大压痕的成品检验,也不由于此法产生的压痕较大,故不宜于某些表面不允许有较大压痕
46、的成品检验,也不宜于薄件试验;宜于薄件试验;因需测量因需测量 d d 值,故被测处要求平稳,操作和测量都需较长时间,在要求迅速检值,故被测处要求平稳,操作和测量都需较长时间,在要求迅速检定大量成品时不适合。定大量成品时不适合。洛氏硬度洛氏硬度洛氏硬度试验是目前应用最广泛的一种方法,它是测定压痕深度来表征材料的硬度值。洛氏硬度试验是目前应用最广泛的一种方法,它是测定压痕深度来表征材料的硬度值。原理:洛氏硬度以压痕陷凹深度原理:洛氏硬度以压痕陷凹深度 t t 作为计量硬度值的指标,所以在同一硬度级下,金属越硬作为计量硬度值的指标,所以在同一硬度级下,金属越硬则压痕深度则压痕深度 t t 越小,越软
47、则越小,越软则 t t 越大。如果直接以越大。如果直接以 t t 的大小作为指标,则将出现硬金属的大小作为指标,则将出现硬金属 t t 值小从而值小从而硬度值小,软金属的硬度值小,软金属的 t t 值大从而硬度值大的现象。为此,只能采取一个不得已的措施,即用选定值大从而硬度值大的现象。为此,只能采取一个不得已的措施,即用选定的常数来减去所得的常数来减去所得 t t 值,值,以其差值来标志洛氏硬度值。此常数规定为(用于以其差值来标志洛氏硬度值。此常数规定为(用于HRCHRC、HRAHRA)和和(用(用于于 HRBHRB),此外在读数上再规定为一度,这样前一常数为,此外在读数上再规定为一度,这样前
48、一常数为 100100 度(在试验机表盘上为度(在试验机表盘上为 100100 格(一格(一圈)圈),后一常数为,后一常数为 130130 度(在表盘上为一圈再加度(在表盘上为一圈再加 3030 格,为格,为 130130 格)格),因此,因此压头与载荷的搭配:压头与载荷的搭配:洛氏硬度的压头分硬质和软质两种。洛氏硬度的压头分硬质和软质两种。硬质的由顶角硬质的由顶角 120120 的金刚石圆锥体的金刚石圆锥体制成,适用于测定淬火钢等较硬的金属材料;软质的为直径制成,适用于测定淬火钢等较硬的金属材料;软质的为直径 1/161/16()或()或 1/81/8()钢球,适用于退()钢球,适用于退火钢
49、、火钢、有色金属等较软材料硬度值的测定。有色金属等较软材料硬度值的测定。生产上用得最多的是生产上用得最多的是 A A 级、级、B B 级和级和 C C 级,级,即即 HRAHRA(金(金刚石圆锥压头、刚石圆锥压头、60kgf60kgf 载荷)载荷),HRBHRB(1/161/16 钢球压头、钢球压头、100kgf100kgf 载荷)和载荷)和 HRCHRC(金刚石圆锥压头、(金刚石圆锥压头、150kgf150kgf 载荷)载荷),而其中又以,而其中又以 HRCHRC 用的最普遍。用的最普遍。优点:优点:有硬质、软质两种压头,适用于各种不同硬质材料的检验,不存在压头变形问题;有硬质、软质两种压头
50、,适用于各种不同硬质材料的检验,不存在压头变形问题;压痕小,不伤工件表面;压痕小,不伤工件表面;操作迅速,立即得出数据,生产效率高,适用于大量生产中的成品操作迅速,立即得出数据,生产效率高,适用于大量生产中的成品检验。检验。缺点:缺点:不同硬度级测得的硬度值无法统一起来,不同硬度级测得的硬度值无法统一起来,如如 HRAHRA,HRBHRB,HRCHRC 数据不具有可比性;数据不具有可比性;-5-5-对组织结构不一致,特别是具有粗大组成相或粗大晶粒的金属材料,因压痕太小,可能正好压对组织结构不一致,特别是具有粗大组成相或粗大晶粒的金属材料,因压痕太小,可能正好压在个别组成相上,缺乏代表性;在个别