《-2010)之数学分类汇编系列(概率统计部分).doc》由会员分享,可在线阅读,更多相关《-2010)之数学分类汇编系列(概率统计部分).doc(75页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 你的首选资源互助社区 概率与统计第一部分 六年高考荟萃2010年高考题一、选择题1. (2010年高考湖北卷理科4)投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰于向上 的点数是3”为事件B,则事件A,B中至少有一件发生的概率是 A. B. C. D.【答案】C【解析】因为事件A,B中至少有一件发生与都不发生互为对立事件,故所求概率为,选C。2. (2010年全国高考宁夏卷6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为(A)100 (B)200 (C)300 (D)400【答案】B
2、解析:根据题意显然有,所以,故3(2010年高考江西卷理科11)一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为和.则ABCD以上三种情况都有可能【答案】B4(2010年高考辽宁卷理科3)两个实习生每人加工一个零件加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为来源:学科网(A) (B) (C) (D)【答案】B1(2010年高考山东卷理科5)已知随机变量Z服从正态分布N(0,),若P
3、(Z2)=0.023,则P(-2Z2)=(A)0.477 (B)0.625 (C)0.954 (D)0.977【答案】C【解析】因为随机变量服从正态分布,所以正态曲线关于直线对称,又,所以,所以0.954,故选C.【命题意图】本题考查正态分布的基础知识,掌握其基础知识是解答好本题的关键.2(2010年高考山东卷理科6)样本中共有五个个体,其值分别为a,0,1,2,3,若该样本的平均值为1,则样本方差为(A) (B) (C) (D)2【答案】D【解析】由题意知,解得,所以样本方差为=2,故选D.【命题意图】本题考查用样本的平均数、方差来估计总体的平均数、方差,属基础题,熟记样本的平均数、方差公式
4、是解答好本题的关键.3.(2010年高考数学湖北卷理科6)将参加夏令营的600名学生编号为:001,002, ,600.采用系统抽样疗法抽取一个 容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001 到300在第1营区,从301到495在第营区,从496到600在第营区.三个营区被 抽中的人数依次为 A 26,16,8 B. 25,17,8 C. 25,16,9 D. 24,17, 9【答案】B【解析】4(2010年高考广东卷理科7)已知随机变量X服从正态分布N(3.1),且=0.6826,则p(X4)=( )A、0.1588 B、0.1587 C、0.1586
5、D0.1585【答案】B【解析】=0.3413,=0.5-0.3413=0.15871(2010年高考北京卷文科3)从1,2,3,4,5中随机选取一个数为a,从1,2,3中随机选取一个数为b,则ba的概率是 (A) (B) (C) (D)2(2010年高考江西卷文科9)有位同学参加某项选拔测试,每位同学能通过测试的概率都是,假设每位同学能否通过测试是相互独立的,则至少每一位同学能通过测试的概率为A B C D【答案】D【命题意图】主要考察对立事件的概率【解析】每位同学不能通过的概率为,所有同学都不能通过的概率为,至少有一位同学能通过的概率为。3(2010年高考安徽卷文科10)甲从正方形四个顶点
6、中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是(A) (A) (A) (A)【答案】C【解析】正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个基本事件。两条直线相互垂直的情况有5种(4组邻边和对角线)包括10个基本事件,所以概率等于.【方法技巧】对于几何中的概率问题,关键是正确作出几何图形,分类得出基本事件数,然后得所求事件保护的基本事件数,进而利用概率公式求概率.二、填空题:1(2010年高考福建卷理科13)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮。假设某选手
7、正确回答每个问题的概率都是,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于 。【答案】0.128【解析】【命题意图】2(2010年高考安徽卷理科15)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球。先从甲罐中随机取出一球放入乙罐,分别以和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则下列结论中正确的是_(写出所有正确结论的编号)。; ; 事件与事件相互独立;是两两互斥的事件; 的值不能确定,因为它与中哪一个发生有关15.【解析】易见是两两互斥的事件,而。【方法总结】本题是概率的
8、综合问题,掌握基本概念,及条件概率的基本运算是解决问题的关键.本题在是两两互斥的事件,把事件B的概率进行转化,可知事件B的概率是确定的.3. (2010年高考数学湖北卷理科14)某射手射击所得环数的分布列如下:已知的期望,则y的值为 【答案】0.4【解析】由表格可知:联合解得.4. (2010年高考湖南卷理科11)在区间上随机取一个数x,则1的概率为_.【答案】【解析】P(1)【命题意图】本题考察几何概率,属容易题。5. (2010年高考安徽卷理科15)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球。先从甲罐中随机取出一球放入乙罐,分别以和表示由甲罐取出的球是红球,
9、白球和黑球的事件;再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则下列结论中正确的是_(写出所有正确结论的编号)。; ; 事件与事件相互独立;是两两互斥的事件; 的值不能确定,因为它与中哪一个发生有关【答案】【解析】易见是两两互斥的事件,而。【方法总结】本题是概率的综合问题,掌握基本概念,及条件概率的基本运算是解决问题的关键.本题在是两两互斥的事件,把事件B的概率进行转化,可知事件B的概率是确定的.6(2010年高考江苏卷试题3)盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ _.【答案】 解析考查古典概型知识。7. (2010年全国高考宁夏
10、卷13)设为区间上的连续函数,且恒有,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间上的均匀随机数和,由此得到N个点,再数出其中满足的点数,那么由随机模拟方案可得积分的近似值为 。【答案】 解析:的几何意义是函数的图像与轴、直线和直线所围成图形的面积,根据几何概型易知8(2010年高考陕西卷理科13)从如图所示的长方形区域内任取一个点,则点取自阴影部分的概率为.xyO13【解析】本题属于几何概型求概率,所求概率为.9(2010年高考上海市理科6)随机变量的概率分布率由下图给出:则随机变量的均值是 【答案】8.210(2010年高考上海市理科9)从一副混合后的扑克牌(52张)中随机抽
11、取1张,事件A为“抽得红桃K”,事件B为“抽得为黑桃”,则概率P(AB)= (结果用最简分数表示) 【答案】11. (2010年高考重庆市理科13)某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至少命中一次的概率为,则该队员每次罚球的命中率为_【答案】解析:由得12(2010年上海市春季高考9)连续掷两次骰子,出现点数之和等于4的概率为 (结果用数值表示)答案:。解析:点数和为的结果为(1,3),(2,2),(3,1)共3个,而总的试验结果为36个,由古典概型概率计算公式可得。1.(2010年高考天津卷理科11)甲、乙两人在10天中每天加工零件的个数用茎叶图表示下图,中间一列的数字表示
12、零件个数,两边的数字表示零件个数的位数。则这10天甲、乙两人日加工零件的平均数分别为 和 。【答案】24,23【解析】甲加工零件的平均数为=24;乙加工零件的平均数为。【命题意图】本题考查茎叶图的基础知识,属容易题。2. (2010年高考湖南卷理科9)已知一种材料的最佳加入量在110g到210 g之间,若用0.618法安排试验,则第一次试点的加入量可以是_g.【答案】171.8或148.2【解析】根据0.618法,第一次试点加入量为110(210110)0.618171.8或210(210110)0.618148.2【命题意图】本题考察优选法的0.618法,属容易题。3(2010年高考江苏卷试
13、题4)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间5,40中,其频率分布直方图如图所示,则其抽样的100根中,有_根在棉花纤维的长度小于20mm。【答案】30 解析考查频率分布直方图的知识。100(0.001+0.001+0.004)5=304(2010年高考北京卷理科11)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。由图中数据可知a 。若要从身高在 120 , 130),130 ,140) , 140 , 150三组内的学生中,用分层抽样的方法选取18人参加一项活动,
14、则从身高在140 ,150内的学生中选取的人数应为 。【答案】0.030;3【解析】由各个小组的频率之和为1,可得a=0.030;而三组身高区间的人数比为3:2:1,由分层抽样的原理不难得到140-150区间内的人数为3人。5(2010年上海市春季高考6)某社区对居民进行上海世博会知晓情况的分层抽样调查。已知该社区的青年人、中年人和老年人分别有800人、1600人、1400人。若在老年人中的抽样人数是70,则在中年人中的抽样人数应该是 。答案:80。解析:由题可知抽取的比例为,故中年人应该抽取人数为。1(2010年高考浙江卷文科17)在平行四边形ABCD中,O是AC与BD的交点,P、Q、M、N
15、分别是线段OA、OB、OC、OD的中点,在APMC中任取一点记为E,在B、Q、N、D中任取一点记为F,设G为满足向量的点,则在上述的点G组成的集合中的点,落在平行四边形ABCD外(不含边界)的概率为 。解析:由题意知,G点共有16种取法,而只有E为P、M中一点,F为Q、N中一点时,落在平行四边形内,故符合要求的G的只有4个,因此概率为,本题主要考察了平面向量与古典概型的综合运用,属中档题。2(2010年高考上海卷文科10)从一副混合后的扑克牌(52张)中随机抽取2张,则“抽出的2张均为红桃”的概率为 (结果用最简分数表示)。解析:考查等可能事件概率“抽出的2张均为红桃”的概率为3(2010年高
16、考辽宁卷文科13)三张卡片上分别写上字母E、E、B,将三张卡片随机地排成一行,恰好排成英文单词BEE的概率为 。 解析:填 题中三张卡片随机地排成一行,共有三种情况:,概率为:KS*5U.C#4. (2010年高考宁夏卷文科14)设函数为区间上的图像是连续不断的一条曲线,且恒有,可以用随机模拟方法计算由曲线及直线,所围成部分的面积,先产生两组每组个,区间上的均匀随机数和,由此得到V个点。再数出其中满足的点数,那么由随机模拟方法可得S的近似值为_【答案】 解析:的几何意义是函数的图像与轴、直线和直线所围成图形的面积,根据几何概型易知5(2010年高考重庆卷文科14)加工某一零件需经过三道工序,设
17、第一、二、三道工序的次品率分别为、,且各道工序互不影响,则加工出来的零件的次品率为_ .【答案】【解析】加工出来的零件的次品的对立事件为零件是正品,由对立事件公式得加工出来的零件的次品率.6(2010年高考湖北卷文科13)一个病人服用某种新药后被治愈的概率为0.9.则服用这咱新药的4个病人中至少3人被治愈的概率为_(用数字作答)。【答案】0.9744【解析】分情况讨论:若共有3人被治愈,则;若共有4人被治愈,则,故至少有3人被治愈概率.7(2010年高考湖南卷文科11)在区间-1,2上随即取一个数x,则x0,1的概率为 。【答案】【命题意图】本题考察几何概率,属容易题。三、解答题:1(2010
18、年高考山东卷理科20)(本小题满分12分)某学校举行知识竞赛,第一轮选拔共设有四个问题,规则如下: 每位参加者计分器的初始分均为10分,答对问题分别加1分、2分、3分、6分,答错任一题减2分; 每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局,当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局; 每位参加者按问题顺序作答,直至答题结束.假设甲同学对问题回答正确的概率依次为,且各题回答正确与否相互之间没有影响.
19、()求甲同学能进入下一轮的概率;()用表示甲同学本轮答题结束时答题的个数,求的分布列和数学的.【解析】本小题主要考查离散型随机变量的分布列和数学期望,考查对立事件、独立事件的概率和求解方法,考查用概率知识解决实际问题的能力.解:设分别为第一、二、三、四个问题.用表示甲同学第个问题回答正确,用表示甲同学第个问题回答错误,则与是对立事件.由题意得所以()记“甲同学能进入下一轮”为事件,则()由题意,随机变量的可能取值为:.由于每题答题结果相互独立,所以因此 随机变量的分布列为 所以 .【命题意图】本题考查了相互独立事件同时发生的概率、考查了离散型随机变量的分布列以及数学期望的知识,考查了同学们利用
20、所学知识解决实际问题的能力。2(2010年高考福建卷理科16)(本小题满分13分)设是不等式的解集,整数。(1)记使得“成立的有序数组”为事件A,试列举A包含的基本事件;(2)设,求的分布列及其数学期望。【命题意图】本小题主要考查概率与统计、不等式等基础知识,考查运算求解能力、应用意识,考查分类与整合思想、必然与或然思想、化归与转化思想。【解析】(1)由得,即,由于整数且,所以A包含的基本事件为。(2)由于的所有不同取值为所以的所有不同取值为,且有,故的分布列为0149P所以=。3.(2010年高考天津卷理科18) (本小题满分12分)某射手每次射击击中目标的概率是,且各次射击的结果互不影响。
21、()假设这名射手射击5次,求恰有2次击中目标的概率:()假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率:()假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记为射手射击3次后的总得分数,求的分布列。【命题意图】本小题主要考查二项分布及其概率计算公式、离散型随机变量的分布列、互斥事件和相互独立事件等基础知识,考查运用概率知识解决实际问题的能力。【解析】(1)解:设为射手在5次射击中击中目标的次数,则.在5次射击中,恰有2次击中目标的概率()解:设“第次射击击中目标”
22、为事件;“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件,则 = =()解:由题意可知,的所有可能取值为 =所以的分布列是01236P4. (2010年高考安徽卷理科21)(本小题满分13分) 品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这瓶酒,并重新按品质优劣为它们排序,这称为一轮测试。根据一轮测试中的两次排序的偏离程度的高低为其评为。 现设,分别以表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令,则是对两次排序的偏离程度的一种
23、描述。 ()写出的可能值集合;()假设等可能地为1,2,3,4的各种排列,求的分布列;()某品酒师在相继进行的三轮测试中,都有,(i)试按()中的结果,计算出现这种现象的概率(假定各轮测试相互独立);(ii)你认为该品酒师的酒味鉴别功能如何?说明理由。5(2010年高考广东卷理科17)(本小题满分12分)某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上40件产品作为样本算出他们的重量(单位:克)重量的分组区间为(490,,(495,,(510,,由此得到样本的频率分布直方图,如图4所示 (1)根据频率分布直方图,求重量超过505克的产品数量 (2)在上述抽取的40件产品中任取2
24、件,设Y为重量超过505克的产品数量,求Y的分布列 (3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率【解析】6. ( 2010年高考全国卷I理科18)(本小题满分12分)(注意:在试题卷上作答无效) 投到某杂志的稿件,先由两位初审专家进行评审若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用设稿件能通过各初审专家评审的概率均为05,复审的稿件能通过评审的概率为03各专家独立评审 (I)求投到该杂志的1篇稿件被录用的概率;(II)记表示投到该
25、杂志的4篇稿件中被录用的篇数,求的分布列及期望【命题意图】本题主要考查等可能性事件、互斥事件、独立事件、相互独立试验、分布列、数学期望等知识,以及运用概率知识解决实际问题的能力,考查分类与整合思想、化归与转化思想.【解析】(18)解: ()记 A表示事件:稿件能通过两位初审专家的评审; B表示事件:稿件恰能通过一位初审专家的评审; C表示事件:稿件能通过复审专家的评审; D表示事件:稿件被录用. 则 D=A+BC, = = =0.25+0.50.3 =0.40. (),其分布列为: 期望.7(2010年高考四川卷理科17)(本小题满分12分)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购
26、买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料。()求甲中奖且乙、丙都没有中奖的概率;()求中奖人数的分布列及数学期望E.解:显然甲、乙、丙三位同学是否中奖独立,所以甲中奖且乙、丙都没有中奖的概率是:(2)来源:学科网ZXXK0123来源:Zxxk.ComP来源:Z&xx&k.ComE=8(2010年高考江苏卷试题22)(本小题满分10分)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%。生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品
27、,若是一等品则获得利润6万元,若是二等品则亏损2万元。设生产各种产品相互独立。(1) 记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列;(2) 求生产4件甲产品所获得的利润不少于10万元的概率。解析 本题主要考查概率的有关知识,考查运算求解能力。满分10分。解:(1)由题设知,X的可能取值为10,5,2,-3,且 P(X=10)=0.80.9=0.72, P(X=5)=0.20.9=0.18, P(X=2)=0.80.1=0.08, P(X=-3)=0.20.1=0.02。 由此得X的分布列为:X1052-3P0.720.180.080.02(2)设生产的4件甲产品中
28、一等品有件,则二等品有件。 由题设知,解得, 又,得,或。所求概率为答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192。9(2010年高考陕西卷理科19)(本小题满分12分)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:来源:Z+xx+k.Com()估计该小男生的人数;()估计该校学生身高在170185cm之间的概率;()从样本中身高在165180cm之间的女生中任选2人,求至少有1人身高在170180cm之间的概率。解 ()样本中男生人数为40 ,由分层出样比例为10%估计全校男生人数为400。()有统计图知,样本中身高在
29、170185cm之间的学生有14+13+4+3+1=35人,样本容量为70 ,所以样本中学生身高在170185cm之间的频率故有f估计该校学生身高在170180cm之间的概率()样本中女生身高在165180cm之间的人数为10,身高在170180cm之间的人数为4。设A表示事件“从样本中身高在165180cm之间的女生中任选2人,求至少有1人身高在170180cm之间”,则来源:Zxxk.Com10(2010年高考北京市理科17) (本小题共13分) www.ks某同学参加3门课程的考试。假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为,(),且不同课程是否取
30、得优秀成绩相互独立。记为该生取得优秀成绩的课程数,其分布列为0123()求该生至少有1门课程取得优秀成绩的概率;()求,的值;()求数学期望。(17)(共13分)www.ks解:事件表示“该生第门课程取得优秀成绩”,=1,2,3,由题意知 ,(I)由于事件“该生至少有1门课程取得优秀成绩”与事件“”是对立的,所以该生至少有1门课程取得优秀成绩的概率是 ,(II)由题意知 整理得 ,由,可得,.(III)由题意知 = = =11(2010年高考江西卷理科18)(本小题满分12分)某迷宫有三个通道,进入迷宫的每个人都要经过一个智能门,首次到达此门,系统会随机(即等可能)为你打开一个通道若是1号通道
31、,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止令表示走出迷宫所需的时间(1)求的分布列;(2)求的数学期望18 (本小题满分12分)解:(1)的所有可能取值为:1,3,4,6,所以的分布列为:1346P(2)(小时)12(2010年高考辽宁卷理科18)(本小题满分12分) 为了比较注射A, B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B。来源:学,科,网Z,X,X,K ()甲、乙是200只家兔中的2只,求
32、甲、乙分在不同组的概率;()下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表()完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;()完成下面22列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.表3: (18)解:()甲、乙两只家兔分在不同组的概率为 4分()(i)图注射药物A后皮肤疱疹面积的频率分布直方图 图注射药物B后皮肤疱疹面积的频率分布直方图可以看出注射药物A后的疱疹面积的中位数在65至70之间,而注射药物B后的疱疹面积的中位数在70至75之间,所以注射药物
33、A后疱疹面积的中位数小于注射药物B后疱疹面积的中位数。 8分(ii)表3:由于K210.828,所以有99.9%的把握认为“注射药物A后的疱疹面积于注射药物B后的疱疹面积有差异”。13(2010年高考浙江卷理科19)(本题满分14分)如图,一个小球从M处投入,通过管道自上而下落到A或B或C。已知小球从每个叉口落入左右两个管道的可能性是相等的。某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为1,2,3等奖。()已知获得1,2,3等奖的折扣率分别为50%,70%,90%。记随机变量为获得k(k=1,2,3)等奖的折扣率,求随机变量的分布列及期望E;()若有3人次(投入1球为
34、1人次)参加促销活动,记随机变量为获得1等奖或2等奖的人次,求P(=2).(19)本题主要考察随机事件的概率和随机变量的分布列、数学期望、二项分布等概念,同时考查抽象概括、运算求解能力和应用意识。满分14分。()解:由题意得的分布列为507090p则=50+70+90=.()解:由()可知,获得1等奖或2等奖的概率为+=.由题意得(3,)则P(=2)=()2(1-)=.14(2010年高考全国2卷理数20)(本小题满分12分) 如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是p,电流能通过T4的概率是0.9电流能否通过各元件相互独立已知T1
35、,T2,T3中至少有一个能通过电流的概率为0.999来源:Z#xx#k.Com()求p; ()求电流能在M与N之间通过的概率; ()表示T1,T2,T3,T4中能通过电流的元件个数,求的期望来源:Z,xx,k.C【命题意图】本试题主要考查独立事件的概率、对立事件的概率、互斥事件的概率及数学期望,考查分类讨论的思想方法及考生分析问题、解决问题的能力.【参考答案】【点评】概率与统计也是每年的必考题,但对考试难度有逐年加强的趋势,已经由原来解答题的前3题的位置逐渐后移到第20题的位置,对考生分析问题的能力要求有所加强,这应引起高度重视.15. (2010年高考重庆市理科17) (本小题满分13分,(
36、)小问5分,()小问8分)在甲、乙等6个单位参加的一次“唱读传讲”赛出活动中,每个单位的节目集中安排在一起若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,6),求:() 甲、乙两单位的演出序号至少有一个为奇数的概率;() 甲、乙两单位之间的演出单位个数的分布列与期望2. (2010年全国高考宁夏卷19)(本小题12分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:是否需要志愿 性别男女需要4030不需要160270(1) 估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2) 能否有99的把握认为该地区的老年人是否需要志愿者提供
37、帮助与性别有关?(3) 根据(2)的结论,能否提供更好的调查方法来估计该地区老年人,需要志愿帮助的老年人的比例?说明理由附:解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估算值为(2)。由于9.9676.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关。 (III)由(II)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好1(201
38、0年高考山东卷文科19)(本小题满分12分) 一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.()从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;()先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求的概率.【命题意图】本小题主要考察古典概念、对立事件的概率计算,考察学生分析问题、解决问题的能力。【解析】(I)从袋子中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个。从袋中随机取出的球的编号之和不大于4的事件共有1和2,1和3两个。因此所求事件的概率为1/3。(II)
39、先从袋中随机取一个球,记下编号为m,放回后,在从袋中随机取一个球,记下编号为n,其一切可能的结果(m, n)有:(1,1)(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1)(3,2), (3,3) (3,4),(4,1) (4,2),(4,3)(4,4),共16个有满足条件nm+2 的事件为(1,3) (1,4) (2,4),共3个所以满足条件n m+2 的事件的概率为 P=3/16故满足条件nm+2 的事件的概率为2(2010年高考天津卷文科18)(本小题满分12分)有编号为,的10个零件,测量其直径(单位:cm),得到下面数据:其中直径在区间1.
40、48,1.52内的零件为一等品。()从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;()从一等品零件中,随机抽取2个. ()用零件的编号列出所有可能的抽取结果; ()求这2个零件直径相等的概率。【命题意图】本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力。【解析】()解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)=.()(i)解:一等品零件的编号为.从这6个一等品零件中随机抽取2个,所有可能的结果有:,共有15种. (ii)解:“从一等品零件中
41、,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:,共有6种.所以P(B)=.4(2010年高考江西卷文科18)(本小题满分12分)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门首次到达此门,系统会随机(即等可能)为你打开一个通道若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止(1)求走出迷宫时恰好用了l小时的概率;(2)求走出迷宫的时间超过3小时的概率【解】(1)设A表示走出迷宫时恰好用了1小时这一事件,则 (2)设B表示走出迷宫的时间超过3小时这一事件,则9( 2010年高考全国卷文科19)(本小题满分12分)(注意:在试题卷上作答无效) 投到某杂志的稿件,先由两位初审专家进行评审若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3各专家独立评审 (I)求投到该杂志的1篇稿件被录用的概率; (