贵州省2023年教师资格之中学数学学科知识与教学能力能力测试试卷B卷附答案.doc

上传人:1595****071 文档编号:73028049 上传时间:2023-02-15 格式:DOC 页数:21 大小:31KB
返回 下载 相关 举报
贵州省2023年教师资格之中学数学学科知识与教学能力能力测试试卷B卷附答案.doc_第1页
第1页 / 共21页
贵州省2023年教师资格之中学数学学科知识与教学能力能力测试试卷B卷附答案.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《贵州省2023年教师资格之中学数学学科知识与教学能力能力测试试卷B卷附答案.doc》由会员分享,可在线阅读,更多相关《贵州省2023年教师资格之中学数学学科知识与教学能力能力测试试卷B卷附答案.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、贵州省贵州省 20232023 年教师资格之中学数学学科知识与教学年教师资格之中学数学学科知识与教学能力能力测试试卷能力能力测试试卷 B B 卷附答案卷附答案单选题(共单选题(共 5050 题)题)1、浆细胞性骨髓瘤的诊断要点是A.骨髓浆细胞增多30%B.高钙血症C.溶骨性病变D.肾功能损害E.肝脾肿大【答案】A2、男性,28 岁,农民,头昏乏力半年有余。体检:除贫血貌外,可见反甲症。检验:外周血涂片示成熟红细胞大小不一,中央淡染;血清铁7.70mol/L(43g/dl),总铁结合力 76.97mol/L(430g/dl);粪便检查有钩虫卵。其贫血诊断为A.珠蛋白生成再生障碍性贫血B.慢性肾病

2、C.缺铁性贫血D.慢性感染性贫血E.维生素 B【答案】C3、命题 P 的逆命题和命题 P 的否命题的关系是()。A.同真同假B.同真不同假C.同假不同真D.不确定【答案】A4、血小板生存期缩短见于下列哪种疾病A.维生素 K 缺乏症B.原发性血小板减少性紫癜C.蒙特利尔血小板综合征D.血友病E.蚕豆病【答案】B5、内、外源性凝血系统形成凝血活酶时,都需要的因子是A.因子B.因子C.因子D.因子E.因子【答案】D6、教学方法中的发现式教学法又叫()教学法A.习惯B.态度C.学习D.问题【答案】D7、导致型超敏反应皮试试验出现假阴性的原因,错误的是A.受试者正使用抗排斥药B.患者皮肤反应较低C.受试

3、者正使用抗组胺类药或激素类药D.注射部位过深或注射量太少E.变应原抗原性丧失或浓度过低【答案】A8、设 a,b 为非零向量,下列命题正确的是()A.a b 垂直于 aB.a b 平行于 aC.ab 平行于 aD.ab 垂直于 a【答案】A9、流式细胞术是一种对单细胞或其他生物粒子膜表面以及内部的化学成分,进行定量分析和分选的检测技术,它可以高速分析上万个细胞,并能从一个细胞中测得多个参数,是目前最先进的细胞定量分析技术。流式细胞仪的主要组成不包括A.液流系统B.光路系统C.抗原抗体系统D.信号测量E.细胞分选【答案】C10、关于 APTT 测定下列说法错误的是A.一般肝素治疗期间,APTT 维

4、持在正常对照的 1.53.0 倍为宜B.受检者的测定值较正常对照延长超过 10 秒以上才有病理意义C.APTT 测定是反映外源凝血系统最常用的筛选试验D.在中、轻度 F、F、F缺乏时,APTT 可正常E.在 DIC 早期 APTT 缩短【答案】C11、最早使用“函数”(function)这一术语的数学家是()。A.约翰贝努利B.莱布尼茨C.雅各布贝努利D.欧拉【答案】B12、义务教育数学课程标准(2011 年版)从四个方面阐述了课程目标,这四个目标是()。A.知识技能、数学思考、问题解决、情感态度B.基础知识、基本技能、问题解决、情感态度C.基础知识、基本技能、数学思考、情感态度D.知识技能、

5、问题解决、数学创新、情感态度【答案】A13、最常见的 Ig 缺陷病是A.选择性 IgA 缺陷病B.先天性胸腺发育不全综合征C.遗传性血管神经性水肿D.慢性肉芽肿病E.阵发性夜间血红蛋白尿【答案】A14、男性,30 岁,黄疸,贫血 4 年,偶见酱油色尿。检验:红细胞 2.1510A.Coomb 试验B.血清免疫球蛋白测定C.Ham 试验D.尿隐血试验E.HBsAg【答案】C15、DIC 诊断中血小板计数低于正常,PT 延长,Fbg 低于 2g/L。如果这三项中只有两项符合,必须补做哪一项纤溶指标A.3P 试验B.PRTC.血小板抗体D.因子E.血小板功能试验【答案】A16、浆细胞性骨髓瘤的诊断要

6、点是A.骨髓浆细胞增多30%B.高钙血症C.溶骨性病变D.肾功能损害E.肝脾肿大【答案】A17、下列数学概念中,用“属概念加和差”方式定义的是()。A.正方形B.平行四边形C.有理数D.集合【答案】B18、关于抗碱血红蛋白的叙述,下列哪项是不正确的A.又称碱变性试验B.珠蛋白生成障碍性贫血时,HbF 减少C.用半饱和硫酸铵中止反应D.用 540nm 波长比色E.测定 HbF 的抗碱能力【答案】B19、数学抽象是数学的基本思想,是形成理性思维的()。A.重要基础B.重要方式C.工具D.基本手段【答案】A20、多发性骨髓瘤患者,血清中 M 蛋白含量低,不易在电泳中发现,常出现本周蛋白质、高血钙、肾

7、功能损害及淀粉样变,属于免疫学分型的哪一型()A.IgA 型B.IgD 型C.轻链型D.不分泌型E.IgG 型【答案】B21、T 细胞阳性选择的主要目的是()A.选择出对自身抗原不发生免疫应答的细胞克隆B.选择掉对自身抗原发生免疫应答的细胞克隆C.实现自身免疫耐受D.实现对自身 MHC 分子的限制性E.实现 TCR 功能性成熟【答案】D22、设 f(x)与 g(x)是定义在同一区间增函数,下列结论一定正确的是()。A.f(x)+g(x)是增函数B.f(x)-g(x)是减函数C.f(x)g(x)是增函数D.f(g(x)是减函数【答案】A23、男性,62 岁,全身骨痛半年,十年前曾做过全胃切除术。

8、体检:胸骨压痛,淋巴结、肝、脾无肿大。检验:血红蛋白量 95gL,白细胞数 3810A.恶性淋巴瘤B.骨质疏松症C.多发性骨髓瘤D.巨幼细胞性贫血E.骨髓转移癌【答案】C24、ELISA 是利用酶催化反应的特性来检测和定量分析免疫反应。ELISA 中常用的供氢体底物A.叠氮钠B.邻苯二胺C.联苯胺D.硫酸胺E.过碘酸钠【答案】B25、义务教育阶段的数学教育是()。A.基础教育B.筛选性教育C.精英公民教育D.公民教育【答案】A26、临床有出血症状且 APTT 正常和 PT 延长可见于A.痔疮B.F缺乏症C.血友病D.F缺乏症E.DIC【答案】B27、下列数学成就是中国著名数学成就的是()。A.

9、B.C.D.【答案】C28、学记提出“时教必有正业,退息必有居学”,这句话强调()。A.课内与课外相结合B.德育与智育相结合C.教师与学生相结合D.教师与家长相结合【答案】A29、学生是数学学习的主体是数学教学的重要理念,下列关于教师角色的概述不正确的是()。A.组织者B.引导者C.合作者D.指挥者【答案】D30、“等差数列”和“等比数列”的概念关系是()A.交叉关系B.同一关系C.属种关系D.矛盾关系【答案】A31、世界上讲述方程最早的著作是()。A.中国的九章算术B.阿拉伯花拉子米的代数学C.卡尔丹的大法D.牛顿的普遍算术【答案】A32、单核-吞噬细胞系统和树突状细胞属于A.组织细胞B.淋

10、巴细胞C.辅佐细胞D.杀伤细胞E.记忆细胞【答案】C33、ELISA 是利用酶催化反应的特性来检测和定量分析免疫反应。ELISA 中的酶结合物是指A.免疫复合物B.结合在固相载体上的酶C.酶与免疫复合物的结合D.酶标记抗原或抗体E.酶与底的结合【答案】D34、函数 f(x)=2x+3x 的零点所在的一个区间是()A.(-2,-l)B.(-1,0)C.(0,1)D.(1,2)【答案】B35、最常引起肝、脾、淋巴结肿大及脑膜白血病的是A.急性粒细胞白血病B.慢性淋巴细胞白血病C.急性粒-单核细胞白血病D.急性淋巴细胞白血病E.慢性粒细胞白血病【答案】D36、骨髓增生极度活跃,有核细胞与成熟红细胞的

11、比例为A.1:50B.1:1C.2:5D.1:4E.1:10【答案】B37、函数 f(x)在a,b上黎曼可积的必要条件是 f(x)在a,b上()。A.可微B.连续C.不连续点个数有限D.有界【答案】D38、在学习数学和应用数学的过程中逐步形成和发展的数学学科核心素养包括:()、直观想象、数学运算、数据分析等。A.分类讨论B.数学建模C.数形结合D.分离变量【答案】B39、男性,35 岁,贫血已半年,经各种抗贫血药物治疗无效。肝肋下 2cm,脾肋下 1cm,浅表淋巴结未及。血象:RBC23010A.铁粒幼细胞性贫血B.溶血性贫血C.巨幼细胞性贫血D.缺铁性贫血E.环形铁粒幼细胞增多的难治性贫血【

12、答案】D40、逻辑推理是得到数学结论、构建数学体系的重要方式,是数学严谨性的()。A.标准B.认知规律C.基本保证D.内涵【答案】C41、适应性免疫应答A.具有特异性B.时相是在感染后数分钟至 96hC.吞噬细胞是主要效应细胞D.可遗传E.先天获得【答案】A42、男性,30 岁,常伴机会性感染,发热、咳嗽、身体消瘦,且查明患有卡氏肺孢子菌肺炎,初步怀疑为艾滋病,且 HIV 筛查试验为阳性结果。如果患者确诊为 HIV 感染,那么下列行为具有传染性的是A.握手B.拥抱C.共同进餐D.共用刮胡刀E.共用洗手间【答案】D43、室间质控应在下列哪项基础上进一步实施A.愈小愈好B.先进设备C.室内质控D.

13、在允许误差内E.质控试剂【答案】C44、与意大利传教士利玛窦共同翻译了几何原本(卷)的我国数学家是()。A.徐光启B.刘徽C.祖冲之D.杨辉【答案】A45、内源凝血途径和外源凝血途径的主要区别在于A.启动方式和参与的凝血因子不同B.启动方式不同C.启动部位不同D.启动时间不同E.参与的凝血因子不同【答案】A46、患者,男,28 岁,患尿毒症晚期,拟接受肾移植手术。介导超急性排斥反应的主要物质是A.细胞毒抗体B.细胞毒 T 细胞C.NK 细胞D.K 细胞E.抗 Rh 抗体【答案】A47、属于检测型超敏反应的试验A.Coombs 试验B.结核菌素皮试C.挑刺试验D.特异性 IgG 抗体测定E.循环

14、免疫复合物测定【答案】B48、男性,10 岁,发热 1 周,并有咽喉痛,最近两天皮肤有皮疹。体检:颈部及腋下浅表淋巴结肿大,肝肋下未及,脾肋下 1cm。入院时血常规结果为:血红蛋白量 113gL:白细胞数 810A.涂抹细胞B.异型淋巴细胞C.淋巴瘤细胞D.原始及幼稚淋巴细胞E.异常组织细胞【答案】B49、在新一轮的数学教育改革中,逐渐代替了数学教学大纲,成为数学教育指导性文件的是()。A.数学教学方案B.数学课程标准C.教学教材D.数学教学参考书【答案】B50、男性,10 岁,发热 1 周,并有咽喉痛,最近两天皮肤有皮疹。体检:颈部及腋下浅表淋巴结肿大,肝肋下未及,脾肋下 1cm。入院时血常

15、规结果为:血红蛋白量 113gL:白细胞数 810A.慢性淋巴细胞白血病B.传染性单核细胞增多症C.上呼吸道感染D.恶性淋巴瘤E.急性淋巴细胞白血病【答案】B大题(共大题(共 1010 题)题)一、在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1 弧度的角”的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫作 1 弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。问题:(1)谈谈“弧度制”在高中数学课程中的作用;(8 分)(2)确定“弧

16、度制”的教学目标和教学重难点;(10 分)(3)根据教材,设计一个“弧度制概念”引入的教学片段,引导学生经历从实际背景抽象概念的过程。(12 分)【答案】二、义务教育教学课程标准(2011 年版)关于平行四边形的性质的教学要求是:探索并证明平行四边形的性质定理平行四边形的对边以及对角相等,请基于该要求,完成下列教学设计任务:(1)设计平行四边形性质的教学目标;(6 分)(2)设计两种让学生发现平行四边形性质的教学流程;(12分)(3)设计平行四边形性质证明的教学流程,使学生领悟证明过程中的教学思想方法。(12 分)【答案】本题主要以初中数学教学中的重要内容之一“平行四边形的性质定理”为例,平行

17、四边形的性质定理的基础知识,初中数学课程内容、课程标准及实施建议,教学过程的基本要素及教学方法的选择,教学设计中的教学目标、教学过程及教学策略等相关知识,比较综合性地考查学科知识、课程知识、教学知识以及教学技能的基本知识和基本技能。(1)新课标倡导三维教学目标,知识与技能目标、过程与方法目标、情感态度与价值观目标。知识与技能目标,是对学生学习结果的描述,即学生同学习所要达到的结果,又叫结果性目标。这种目标一般有三个层次的要求:学懂、学会、能应用。过程与方法目标,是学生在教师的指导下,如何获取知识和技能的程序和具体做法,是过程中的目标,又叫程序性目标。这种目标强调三个过程:做中学、学中做、反思。

18、情感态度与价值观目标,是学生对过程或结果的体验后的倾向和感受,是对学习过程和结果的主观经验,又叫体验性目标。它的层次有认同、体会、内化三个层次。知识与技能目标是过程与方法目标、情感态度与价值观目标的基础;过程与方法目标是实现知识与技能目标的载体,情感态度与价值观目标对其他目标有重要的促进和优化作用。(2)让学生发现平行四边形性质的教学流程,可以从不同角度进行设计,如“观察猜想验证归纳”,“动手操作小组讨论归纳总结”等,但重要的是让学生在学习过程中进行主动学习,教师只是起到引导的作用,充分体现“学生是主体,教师是主导”的教学理念。(3)平行四边形关于边、角的性质定理,即平行四边形的对边以及对角相

19、等,这一定理的证明是通过证明三角形全等来证明对边、对角相等来进行的。注意在平行四边形性质证明的教学流程中,务必使学生领悟证明过程中所用到的转化思想与方法。三、数学的产生与发展过程蕴含着丰富的数学文化。(1)以“勾股定理”教学为例,说明在数学教学中如何渗透数学文化。(2)阐述数学文化对学生数学学习的作用。【答案】本题考查数学文化在数学教学过程中的渗透。数学文化包含数学思想、数学思维方式和数学相关历史材料等方面。四、义务教育数学课程标准(2011 年版)附录中给出了两个例子:例 1.计算 1515,2525,9595,并探索规律。例2.证明例 1 所发现的规律。很明显例 1 计算所得到的乘积是一个

20、三位数或者四位数,其中后两位数为 25,而百位和千位上的数字存在这样的规律:12=2,23=6,34=12,这是“发现问题”的过程,在“发现问题”的基础上,需要尝试用语言符号表达规律,实现“提出问题”,进一步实现“分析问题”和“解决问题”。请根据上述内容,完成下列任务:(1)分别设计例 1、例 2的教学目标;(8 分)(2)设计“提出问题”的主要教学过程;(8 分)(3)设计“分析问题”和“解决问题”的主要教学过程;(7 分)(4)设计“推广例 1 所探究的规律”的主要教学过程。(7 分)【答案】本题主要考查考生对于新授课教学设计的能力。五、在“有理数的加法”一节中,对于有理数加法的运算法则的

21、形成过程,两位教师的一些教学环节分别如下:【教师】第一步:教师直接给出几个有理数加法算式,引导学生根据有理数的分类标准,将加法算式分成六类,即正数与正数相加,正数与负数相加,正数与相加,与相加,负数与相加,负数与负数相加。第二步:教师给出具体情境,分析两个正数相加,两个负数相加,正数与负数相加的情况。第三步:让学生进行模仿练习。第四步:教师将学生模仿练习的题目分成四类:同号相加,一个加数是,互为相反数的两个数相加,异号相加。分析每一类题目的特点,得到有理数加法法则。【教师】第一步:请学生列举一些有理数加法的算式。第二步:要求学生先独立运算,然后小组讨论,再全班交流。对于讨论交流的过程,教师提出

22、具体要求:运算的结果是什么?你是怎么得到结果的?讨论过程中,学生提出利用具体情境来解释运算的合理性第三步:教师提出问题:“不考虑具体情境,基于不同情况分析这些算式的运算,有哪些规律?”分组讨论后再全班交流,归纳得到有理数加法法则。问题:【答案】本题考查考生对基本数学思想方法的掌握及应用。六、案例:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群里,要数腿共 48,要数脑袋整 l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为 17 只,总的腿数应为 34 条,但现在有 48 条腿,造成腿的数目不够是由于小兔的数目是 O,每有一只小兔便会增加两条腿,敌应有(48172)2

23、=7 只小兔。相应地,小鸡有 10 只。解法二:用代数方法:可设有 x 只小鸡,y 只小兔,则 x+y=17;2x+4y=48。将第一个方程的两边同乘以-2 加到第二个方程中去,得 x+y=17;(4-2)y=48-17x2。解上述第二个方程得 y=7,把 y=7 代入第一个方程得 x=10。所以有 10 只小鸡7 只小兔。问题:(1)试说明这两种解法所体现的算法思想;(10 分)(2)试说明这两种算法的共同点。(10 分)【答案】(1)解法一所体现的算法是:S1 假设没有小兔则小鸡应为 n 只;S2计算总腿数为 2n 只;S3 计算实际总腿数 m 与假设总腿数 2n 的差值 m-2n;S4计

24、算小兔只数为(m-2n)2;S5 小鸡的只数为 n-(m-2n)2;解法二所体现的算法是:S1 设未知数 S2 根据题意列方程组;S3 解方程组:S4 还原实际问题,得到实际问题的答案。(2)不论在哪一种算法中,它们都是经有限次步骤完成的,因而它们体现了算法的有穷性。在算法中,第一步都能明确地执行,且有确定的结果,因此具有确定性。在所有算法中,每一步操作都是可以执行的,也就是具有可行性。算法解决的都是一类问题,因此具有普适性。七、数学教育家弗赖登塔尔(Hans.Freudental)认为,人们在观察认识和改造客观世界的过程中,运用数学的思想和方法来分析和研究客观世界的种种现象,从客观世界的对象

25、及其关系中抽象并形成数学的概念、法则和定理,以及为解决实际问题而构造的数学模型的过程,就是一种数学化的过程。(1)请举出一个实例,并简述其“数学化”的过程:(2)分析经历上述“数学化”过程对培养学生“发现问题,提出问题”以及“抽象概括”能力的作用。【答案】本题主要考查对“数学化”的理解。八、下面是某位老师引入“负数”概念的教学片段。师:我们当地 7 月份的平均气温是零上 28,l 月份的平均气温是零下 3,问 7 月份的平均气温比 1月份的平均气温高几度如何列式计算生:用零上 28减去零下 3,得到的答案是 31。师:答案没错,算式呢生:文字与数字混在一起,一点也不美观。生:零上 28,我们常

26、说成 28,可用 28 表示,但是零下 3不能说成 3呀!也就不能用 3 表示。师:大家的发言很有道理,如何解决这一系列的矛盾呢看样子有必要引入一个新数来表示零下 3c。这时,零下 3就可写成-3,-3就是负数。问题:(1)对该教师情境创设的合理性作出解释;(2)在引入数学概念时,结合上述案例,说说教师创设情境要考虑哪些因素【答案】(1)在这段教学中,教师没有将负数的概念强压给学生,而是设计了计算温度这个情境,让学生自己参与计算活动,发现其中的困惑,从而产生学习新数学概念的意愿。教师只是从中提炼出学生的想法,并进一步上升为数学知识负数。这样,负数概念的提出,成为了学生的自觉行为。学生对负数概念

27、的引入有了较深的思想基础,就会认识到学习负数的必要性,为学好负数奠定了基础。(2)引入数学概念是教学的开始,学生能否掌握好这个概念,与教师引入的艺术是密切联系的。因此,在引人数学概念时,要考虑下面的因素。学习的必要性。引入新概念时,教师应创设一个引入概念的情境,让学生在情境中领会概念产生的必要性。内容的实质性。引入数学概念时,教师所选用的实例要反映概念的本质,不要让太多的无关因素干扰了学生学习的注意力,影响数学概念的形成。数量的适量性。在引入概念时,教师一般要举出一些例子,以便加深学生对概念的初步认识。实例的趣味性。教师在选用例子进行概念教学时,要注意例子的生动有趣,要能引发学生的学习兴趣。教

28、师要尽量结合学生的生活实际或者选择学生非常熟悉与非常感兴趣的问题作为例子。九、数学的产生与发展过程蕴含着丰富的数学文化。(1)以“勾股定理”教学为例,说明在数学教学中如何渗透数学文化。(2)阐述数学文化对学生数学学习的作用。【答案】本题考查数学文化在数学教学过程中的渗透。数学文化包含数学思想、数学思维方式和数学相关历史材料等方面。一十、在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1 弧度的角”的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫作 1 弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。问题:(1)谈谈“弧度制”在高中数学课程中的作用;(8 分)(2)确定“弧度制”的教学目标和教学重难点;(10 分)(3)根据教材,设计一个“弧度制概念”引入的教学片段,引导学生经历从实际背景抽象概念的过程。(12 分)【答案】

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 事业单位考试

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁