《详细逆变电路.pptx》由会员分享,可在线阅读,更多相关《详细逆变电路.pptx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、4.14.1逆变器的性能指标与分类 1 1)定义:将逆变电路的交流侧接到交流电网上,把直流电逆变成同频率的交流电反送到电网去。2 2)应用:直流电机的可逆调速、绕线型异步电机的串级调速、高压直流输电和太阳能发电等方面。1 1)定义:逆变器的交流侧不与电网联接,而是直接接到负载,即将直流电逆变成某一频率或可变频率的交流电供给负载2 2)应用:它在交流电机变频调速、感应加热、不停电电源等方面应用十分广泛,是构成电力电子技术的重要内容。1 1、有源逆变:2 2、无源逆变:第1页/共31页4.1.14.1.1逆变器的性能指标 (1 1)谐波系数HFHF:谐波分量有效值同基波分量有致值之比。(2 2)总
2、谐波系数:总谐波系数表征了一个实际波形同其基波的接近程度。(5 5)电磁干扰(EMIEMI)和电磁兼容性(EMCEMC)(3 3)逆变效率(4 4)单位重量的输出功率:衡量逆变器输出率密度的指标。第2页/共31页4.1.2 4.1.2 逆变电路的分类 电压型:输人端并接有大电容,输入直流电源为恒压源,逆变器将直流电压变换成交流电压。电流型:输入端串接有大电感,输入直流电源为恒流源,逆变器将输入的直流电流变换为交流电流输出。(1 1)、根据输入直流电源特点分类 半桥式逆变电路;全桥式逆变电路;推换式逆变电路;其他形式:如单管晶体管逆变电路。(2 2)、根据电路的结构特点分类第3页/共31页4.1
3、.24.1.2逆变电路的分类(3 3)、根据换流方式分类(4 4)、根据负载特点分类 非谐振式逆变电路 谐振式逆变电路 负载换流型逆变电路;脉冲换流型逆变电路;自换流型逆变电路。第4页/共31页4.1.3 4.1.3 逆变电路用途 1 1、可以做成变频变压电源(VVVFVVVF),主要用于交流电动机调速。2 2、可以做成恒频恒压电源(CVCFCVCF),其典型代表为不间断电源(UPSUPS)、航空机载电源、机车照明,通信等辅助电源也要用CVCFCVCF电源。3 3、可以做成感应加热电源,例如中频电源,高频电源等。逆变器的用途十分广泛:返回第5页/共31页4.2 4.2 逆变电路的工作原理 开
4、关 T1、T4闭 合,T2、T3断 开:u0=Ud;开 关 T1、T4断 开,T2、T3闭 合:u0=Ud;当以频率fS交替切换开关T1、T4和T2、T3时,则在电阻R上获得如图4.2.4(b)所示的交变电压波形,其周期Ts=1/fS,这样,就将直流电压E变成了交流电压uo。uo含有各次谐波,如果想得到正弦波电压,则可通过滤波器滤波获得。图4.2.1 单相桥式逆变电路工作原理 1、主要功能:图4.2.1(a)中主电路开关T1T4,它实际是各种半导体开关器件的一种理想模型。逆变电路中常用的开关器件有快速晶闸管、可关断晶闸管(GTO)、功率晶体管(GTR)、功率场效应晶体管(MOSFET)、绝缘栅
5、晶体管(IGBT)。将直流电逆变成某一频率或可变频率的交流电供给负载。2、工作原理:返回第6页/共31页 它由两个导电臂构成,每个导电臂由一个全控器件和一个反并联二极管组成。在直流侧接有两个相互串联的足够大的电容C1和C2,且满足C1=C2。设感性负载连接在A、0两点间。T1和T2之间存在死区时间,以避免上、下直通,在死区时间内两晶闸管均无驱动信号。1.1.电压型逆变电路半桥逆变电路结构及波形:4.3.1 4.3.1 电压型单相半桥逆变电路4.3 4.3 电压型逆变电路 动画第7页/共31页 输出电压有效值为:由傅里叶分析,输出电压瞬时值为:其中,为输出电压角频率。当 n=1时其基波分量的有效
6、值为:(4.3.1)(4.3.2)(4.3.3)第8页/共31页 在一个周期内,电力晶体管T1和T2的基极信号各有半周正偏,半周反偏,且互补。若负载为阻感负载,设t2时刻以前,T1有驱动信号导通,T2截止,则 u0=Ud/2。t2时刻关断的T1,同时给T2发出导通信号。由于感性负载中的电流i。不能立即改变方向,于是D2导通续流,u0=Ud/2。t3时刻i。降至零,D2截止,T2导通,i。开始反向增大,此时仍然有u0=Ud/2。在t4时刻关断T2,同时给T1发出导通信号,由于感性负载中的电流i。不能立即改变方向,D1先导通续流,此时仍然有u0=Ud/2;t5时刻 i。降至零,T1导通,u0=Ud
7、/2;图4.3.1 电压型半桥逆变电路及其电压电流波形2 2、工作原理:缓冲电感反馈的无功能量第9页/共31页缺点:1)交流电压幅值仅为Ud/2;2)直流侧需分压电容器;3 3)为了使负载电压接近正弦波通常在输出端要接LC滤波器,输出滤波器LC滤除逆变器输出电压中的高次谐波。优点:简单,使用器件少;应用:用于几kW以下的小功率逆变电源;第10页/共31页4.3.2 4.3.2 电压型单相全桥逆变电路 全控型开关器件T1和T4构成一对桥臂,T2和T3构成一对桥臂,T1和T4同时通、断;T2和T3同时通、断。T1(T)4与T2(T3)的驱动信号互补,即T1和T4有驱动信号时,T2和T3无驱动信号,
8、反之亦然,两对桥臂各交替导通180。1、电路工作过程:第11页/共31页输出方波电压瞬时值:输出方波电压有效值:基波分量的有效值:图4.3.2 电压型单相全桥逆变电路和电压、电流波形图(4.3.6)(4.3.4)(4.3.5)同单相半桥逆变电路相比,在相同负载的情况下,其输出电压和输出电流的幅值为单相半桥逆变电路的两倍。1 1)纯电阻负载时第12页/共31页 0tTs4,T Ts s2t3T2t3Ts s4 4期间,D1、D4导通起负载电流续流作用,在此期间T T1 1 T T4 4均不导通。图4.3.2 电压型单相全桥逆变 电路和电压、电流波形图 2 2)电感负载时由可得负载电流峰值为:(4
9、.3.7)第13页/共31页 0t期 间,T1和 T4有驱动信号,由于电流i0为负值,T1和T4不导通,D1、D4导通起负载电流续流作用,u0=+Ud。t期间,i0为正值,T1和T4才导通。t+期 间,T2和 T3有驱动信号,由于电流i0为负值,T2、T3不导通,D2、D3导通起负载电流续流作用,u0=Ud。+t2期间,T2和T3才导通。3 3)阻感负载RLRL时图4.3.2 电压型单相全桥逆变 电路和电压、电流波形图 图4.3.2(e)所示是RL负载时直流电源输入电流的波形。图4.3.2(f)所示是RL负载时直流电源输入电流的波形。第14页/共31页4.3.3 4.3.3 电压型三相桥式逆变
10、电路 电压型三相桥式逆变电路的基本工作方式为180180导电型,即每个桥臂的导电角为180180,同一相上下桥臂交替导电的纵向换流方式,各相开始导电的时间依次相差120120。在一个周期内,6 6个开关管触发导通的次序为T T1 1TT2 2 T T3 3 TT4 4 T T5 5TT6 6,依次相隔6060,任一时刻均有三个管子同时导通,导通的组合顺序为T T1 1T T2 2T T3 3,T T2 2T T3 3T T4 4,T T3 3T T4 4T T5 5,T T4 4T T5 5T T6 6,T T5 5T T6 6T T1 1,T T6 6T T1 1T T2 2,每种组合工作6
11、060。图4.3.3 电压型三相桥式逆变电路 1 1、工作过程:第15页/共31页 将一个工作周期分成6个区域。在00,ug20,ug30,则有T1,T2,T3导通,2 2、各相负载相电压和线电压波形:根据同样的思路可得其余5个时域的值线电压相电压图4.3.4 4.3.4 电压型三相桥式逆变电路及其工作波形式中Ud为逆变器输入直流电压。第16页/共31页 3 3、负载相电压和线电压幅值分析:利用博里叶分析,其相电压的瞬时值为:相电压基波幅值 (4.3.8)(4.3.9)由上式可知,负载相电压中无3次谐波,只含更高阶奇次谐波,n次谐波幅值为基波幅值的1/n。其线电压的瞬时值为:线电压基波幅值(4
12、.3.11)(4.3.10)由上式可知,负载线电压中无3次谐波,只含更高阶奇次谐波,n次谐波幅值为基波幅值的1/n。第17页/共31页表4.3.1三相桥式逆变电路的工作状态表返回第18页/共31页4.4.1 4.4.1 电流型单相桥式逆变电路 当T1、T4导通,T2、T3关断时,I0=Id;反之,I0=-Id。当以频率f交替切换开关管T1、T4和T2、T3时,则在负载上获得如图 4.4.1(b)所示的电流波形。输出电流波形为矩形波,与电路负载性质无关,而输出电压波形由负载性质决定。主电路开关管采用自关断器件时,如果其反向不能承受高电压,则需在各开关器件支路串入二极管。图4.4.1 电流型单相桥
13、式 逆变电路及电流波形 1、电路工作过程:防反相高压恒流大电感4.4 4.4 电流型逆变电路第19页/共31页其中基波幅值I01m和基波有效值I01分别为(4.4.1)(4.4.2)(4.4.3)将图4.4.1(b)所示的电流波形i0展开成傅氏级数,有2、电流波形参数计算:图4.4.1 电流型单相桥式 逆变电路及电流波形 第20页/共31页 导电方式为120导通、横向换流方式,任意瞬间只有两个桥臂导通。导通顺序为1T2T3T4T5T6,依次间隔60,每个桥臂导通120。这样,每个时刻上桥臂组和下桥臂组中都各有一个臂导通。输出电流波形与负载性质无关。输出电压波形由负载的性质决定。图4.4.3 电
14、流型三相桥式逆变电路原理图及输出电流波形(4.4.4)1、工作方式:输出电流的基波有效值I01和直流电流Id的关系式为:返回第21页/共31页4.5 4.5 负载换流式逆变电路4.5.1 并联谐振式逆变电路 1、电路结构 2、工作原理 3、电路参数计算 4.5.2 串联谐振式逆变电路 1、电路结构 2、工作原理 返回第22页/共31页4.5.1 4.5.1 并联谐振式逆变电路 负载为中频电炉,实际上是一个感应线圈,图中L L和R R串联为其等效电路。因为负载功率因数很低,故并联补偿电容器C C。电容C C和电感L L、电阻R R构成并联谐振电路,所以称这种电路为并联谐振式逆变电路。本电路采用负
15、载换流,即要求负载电流超前电压,因此,补偿电容应使负载过补偿,使负载电路工作在容性小失谐情况下。图4.6.1 并联谐振式逆变电路的原理图、电路结构:小电感,限制晶闸管电流上升率大滤波电感第23页/共31页并联谐振式逆变电路属电流型,故其交流输出电流波形接近矩形波,其中包含基波和各次谐波。工作时晶闸管交替触发的频率应接近负载电路谐振频率,故负载对基波呈现高阻抗,而对谐波呈现低阻抗,谐波在负载电路上几乎不产生压降,因此,负载电压波形为正弦波。又因基波频率稍大于负载谐振频率,负载电路呈容性,io超前电压uo一定角度,达到自动换流关断晶闸管的目的。图4.6.3 并联谐振式逆变电路原理图及其工作波形 、
16、工作原理:第24页/共31页图4.6.2 并联谐振式逆变电路换流的工作过程 逆变电路换流的工作过程第25页/共31页t2时刻触发T2,T3,电路开始换流。由于T2,T3导通时,负载两端电压施加到T1,T4的两端,使T1,T4承受负压关断。由于每个晶闸管都串有换相电抗器LT ,故T1和T4在t2时刻不能立刻关断,T2,T3中的电流也不能立刻增大到稳定值。在换流期间,四个晶闸管都导通,由于时间短和大电感Ld的恒流作用,电源不会短路。当t=t4时刻,T1、T4电流减至零而关断,直流侧电流Id全部从T1、T4转移到T2、T3,换流过程结束。t4-t2=tr称为换流时间。T1、T4中的电流下降到零以后,
17、还需一段时间后才能恢复正向阻断能力,因此换流结束以后,还要使T1、T4承受一段反压时间t才能保证可靠关断。t=t5t4应大于晶闸管关断时间tq。图4.6.3 并联谐振式逆变电路原理图及其工作波形 第26页/共31页为了保证电路可靠换流,必须在输出电压u0过零前t时刻触发T2、T3,称t为触发引前时间。为了安全起见,必须使 式中k为大于1的安全系数,一般取为23。负载的功率因数角由负载电流与电压的相位差决定,从图3.6.3可知:其中为电路的工作频率。图4.6.3 并联谐振式逆变工作波形(4.6.2)(4.6.1)第27页/共31页 如果忽略换流过程,i0为矩形波。展开成傅氏级数得 (4.6.4)
18、(4.6.5)(4.6.7)其基波电流有效值逆变电路的输入功率Pi为 逆变电路的输出功率Po为因为Po=Pi,于是可求得负载电压有效值U0和直流电压Ud的关系:负载电流i0和直流侧电流Id的关系:(4.6.3)(4.6.6)返回第28页/共31页 其直流侧采用不可控整流电路和大电容滤波,从而构成电压型逆变电路。电路为了续流,设置了反并联二极管D1D4。补偿电容C和负载电感线圈构成串联谐振电路。为了实现负载换流,要求补偿以后的总负载呈容性。图4.6.4 串联谐振式逆变电路 l1 1、电路结构4.5.2 串联谐振式逆变电路第29页/共31页 设晶闸管T1、T4导通,电流从A流向B,uo左正右负。由于电流超前电压,当t=t1时,电流为零。当tt1时,电流反向。由于T2、T3未导通,反向电流通过二极管D1、D4续流,T1、T4承受反压关断。当t=t2时,触发T2、T3,负载两端电压极性反向,即左负右正,D1、D4截止,电流从T2、T3中流过。当tt3时,电流再次反向,电流通过D2、D3续流,T2、T3承受反压关断。当t=t4时,再触发T2、T3。二极管导通时间t即为晶闸管反压时间,要使晶闸管可靠关断,t应大于晶闸管关断时间tq。图4.5.5 串联谐振式逆变 电路的工作波形图 2、工作原理返回第30页/共31页感谢您的观看!第31页/共31页