《数据挖掘入门.pptx》由会员分享,可在线阅读,更多相关《数据挖掘入门.pptx(91页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023/2/1211引言2KDD与数据挖掘3数据挖掘方法4数据挖掘的应用和发展趋势5数据预处理6可视化数据挖掘第1页/共91页2023/2/122一、引言什么激发了数据挖掘 近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据可以广泛使用,并且迫切需要将这些数据转换成有用的信息和知识。获取的信息和知识可以广泛应用于各种领域,如商务管理、生产控制、市场分析、工程设计和科学探索等。面对海量数据库和大量繁杂信息,如何才能从中提取有价值的知识,进一步提高信息的利用率,由此引发了一个新的研究方向:基于数据库的知识发现(Knowledge Discovery in Database)及相
2、应的数据挖掘(Data Mining)理论和技术的研究。第2页/共91页2023/2/123为什么数据挖掘是重要的 数据的丰富带来了对强有力的数据分析工具的需求。快速增长的海量数据收集存放在大型和大量的数据库中,没有强有力的工具,这些数据就变成了“数据坟墓”难得再访问的数据档案。因此数据和信息之间的鸿沟要求系统地开发数据挖掘工具,将数据坟墓转换成知识“金块”。第3页/共91页2023/2/1242.1 KDD定义 人们给KDD下过很多定义,内涵也各不相同,目前公认的定义是由Fayyad等人提出的。所谓基于数据库的知识发现(KDD)是指从大量数据中提取有效的、新颖的、潜在有用的、最终可被理解的模
3、式的非平凡过程。二、KDD与数据挖掘第4页/共91页2023/2/1252.2 KDD过程 KDD是一个人机交互处理过程。该过程需要经历多个步骤,并且很多决策需要由用户提供。从宏观上看,KDD过程主要经由三个部分组成,即数据整理、数据挖掘和结果的解释评估。第5页/共91页2023/2/126知识发现(KDD)的过程数据清理筛选数据目标数据预处理及变换变换后的数据数据挖掘解释/评估第6页/共91页2023/2/127知识发现(KDD)的步骤1.数据准备:了解KDD应用领域的有关情况。包括熟悉相关的知识背景,搞清用户需求。2.数据选取:数据选取的目的是确定目标数据,根据用户的需要从原始数据库中选取
4、相关数据或样本。在此过程中,将利用一些数据库操作对数据库进行相关处理。3.数据预处理:对步骤2中选出的数据进行再处理,检查数据的完整性及一致性,消除噪声及与数据挖掘无关的冗余数据,根据时间序列和已知的变化情况,利用统计等方法填充丢失的数据。第7页/共91页2023/2/1284.数据变换:根据知识发现的任务对经过预处理的数据再处理,主要是通过投影或利用数据库的其它操作减少数据量。5.确定KDD目标:根据用户的要求,确定KDD要发现的知识类型。6.选择算法:根据步骤5确定的任务,选择合适的知识发现算法,包括选取合适的模型和参数。第8页/共91页2023/2/1297.数据挖掘:这是整个KDD过程
5、中很重要的一个步骤。运用前面的选择算法,从数据库中提取用户感兴趣的知识,并以一定的方式表示出来。8.模式解释:对在数据挖掘步骤中发现的模式(知识)进行解释。通过机器评估剔除冗余或无关模式,若模式不满足,再返回到前面某些处理步骤中反复提取。9.知识评价:将发现的知识以用户能了解的方式呈现给用户。其中也包括对知识一致性的检查,以确信本次发现的知识不会与以前发现的知识相抵触。第9页/共91页2023/2/1210什么是数据挖掘1.数据挖掘(从数据中发现知识)从海量的数据中抽取感兴趣的(有价值的、隐含的、以前没有用但是潜在有用信息的)模式和知识。2.其它可选择的名字 数据库中知识挖掘、知识提取、数据/
6、模式分析、数据考古、数据捕捞、信息获取、事务智能等。3.广义观点 数据挖掘是从存放在数据库、数据仓库中或其它信息库中的大量数据中挖掘有趣知识的过程。第10页/共91页2023/2/1211数据挖掘系统的组成数据库、数据仓库或其他信息库:是一个或一组数据库、数据仓库、电子表格或其他类型的信息库。可以在数据上进行数据清理和集成。数据库或数据仓库服务器:根据用户的挖掘请求,数据库或数据仓库服务器负责提取相关数据。知识库:是领域知识,用于指导搜索,或评估结果模式的兴趣度。第11页/共91页2023/2/1212数据挖掘引擎:数据挖掘系统的基本部分,由一组功能模块组成,用于特征化、关联、分类、聚类分析以
7、及演变和偏差分析。模式评估模块:使用兴趣度量,并与数据挖掘模块交互,以便将搜索聚焦在有趣的模式上,可能使用兴趣度阈值过滤发现的模式。图形用户界面:该模块在用户和数据挖掘系统之间通信,允许用户与系统交互,指定数据挖掘查询或任务,提供信息,帮助搜索聚焦,根据数据挖掘的中间结果进行探索式数据挖掘。第12页/共91页2023/2/1213数据挖掘系统结构数据仓库数据清理 数据集成过滤数据库数据库或数据仓库服务器数据挖掘引擎模式评估图形用户界面 知识库第13页/共91页2023/2/12143.1 可以分别按挖掘任务、挖掘对象和挖掘方法来分类。1.按挖掘任务分类:包括分类或预测知识模型发现,数据总结,数
8、据聚类,关联规则发现,时序模式发现,依赖关系或依赖模型发现,异常和趋势发现等。2.按挖掘对象分类:包括关系数据库,面向对象数据库,空间数据库,时态数据库,文本数据库,多媒体数据库,异构数据库,数据仓库,演绎数据库和Web数据库等。三、数据挖掘方法第14页/共91页2023/2/12153.按挖掘方法分类:包括统计方法,机器学习方法,神经网络方法和数据库方法,其中:统计方法可分为:回归分析(多元回归、自回归等),判别分析(贝叶斯判别、费歇尔判别、非参数判别等),聚类分析(系统聚类、动态聚类等),探索性分析(主成分分析、相关分析等)等。机器学习方法可分为:归纳学习方法(决策树、规则归纳等),基于范
9、例学习,遗传算法等。神经网络方法可以分为:前向神经网络(BP算法等),自组织神经网络(自组织特征映射、竞争学习等)。数据库方法分为:多为数据分析和OLAP技术,此外还有面向属性的归纳方法。第15页/共91页2023/2/12163.2 数据挖掘方法1.粗糙集 1982年波兰数学家Z.Pawlak针对G.Frege的边界线区域思想提出了粗糙集(Rough Set),他把那些无法确认的个体都归属于边界线区域,而这种边界线区域被定义为上近似集和下近似集之差集。粗糙集理论主要特点在于它恰好反映了人们用粗糙集方法处理不分明问题的常规性,即以不完全信息或知识去处理一些不分明现象的能力,或依据观察、度量到的
10、某些不精确的结果而进行分类数据的能力。第16页/共91页2023/2/12172.模糊集 经典集合理论对应二值逻辑,一个元素要么属于、要么不属于给定集合。因此经典集合不能很好地描述具有模糊性和不确定性的问题。美国加利福尼亚大学的扎德教授于1965年提出了模糊集合论,用隶属程度来描述差异的中间过渡,是一种用精确的数学语言对模糊性进行描述的方法。第17页/共91页2023/2/1218 定义:论域X=x上的模糊集合A由隶属函数A(x)来表征。其中A(x)在实轴的闭区间0,1中取值,A(x)的大小反映x对于模糊集合A的隶属程度。A(x)的值接近1,表示x隶属于A的程度很高。A(x)的值接近0,表示x
11、隶属于A的程度很低。特例,当A的值域取0,1闭区间的两个端点,亦即0,1两个值时,A便退化为一个普通的逻辑子集。隶属函数也就退化为普通逻辑值。第18页/共91页2023/2/12193.聚类分析 聚类是对物理的或抽象的对象集合分组的过程。聚类生成的组为簇,簇是数据对象的集合。簇内部任意两个对象之间具有较高的相似度,而属于不同簇的两个对象间具有较高的相异度。相异度可以根据描述对象的属性值计算,对象间的距离是最常采用的度量指标。在实际应用中,经常将一个簇中的数据对象作为一个整体看待。用聚类生成的簇来表达数据集不可避免地会损失一些信息,但却可以使问题得到必要的简化。主要的数据挖掘聚类方法有:划分的方
12、法、层次的方法、基于密度的方法、基于网格的方法、基于模型的方法第19页/共91页2023/2/12204.关联规则 关联规则反映一个事物与其它事物之间的相互依存性和关联性,如果两个事物或者多个事物之间存在一定的关联关系,那么其中一个事物就能够通过其他事物预测到。人们希望在海量的商业交易记录中发现感兴趣的数据关联关系,用以帮助商家作出决策。例如:面包 2%牛奶 1.5%(占超市交易总数)2%和1.5%表明这两种商品在超市经营中的重要程度,称为支持度。商家关注高支持度的产品。面包=牛奶 60%在购买面包的交易中,有60%的交易既买了面包又买了牛奶,成60%为规则“面包=牛奶”的信任度。信任度反映了
13、商品间的关联程度。第20页/共91页2023/2/1221 项目构成的集合称为项集。项集在事物数据库中出现的次数占总事物的百分比叫做项集的支持度。如果项集的支持度超过用户给定的最小支持度阈值,就称该项集是频繁项集。关联规则就是支持度和信任度分别满足用户给定阈值的规则。发现关联规则需要经历如下两个步骤:(1)找出所有的频繁项。(2)由频繁项集生成满足最小信任度阈值的规则。第21页/共91页2023/2/12225.人工神经网络 人工神经网络是指由简单计算单元组成的广泛并行互联的网络,能够模拟生物神经系统的结构和功能。组成神经网络的单个神经元的结构简单,功能有限,但是,由大量神经元构成的网络系统可
14、以实现强大的功能。由于现实世界的数据关系相当复杂,非线性问题和噪声数据普遍存在。将人工神经网络应用于数据挖掘,希望借助其非线性处理能力和容噪能力,得到较好的数据挖掘结果。将人工神经网络应用于数据挖掘的主要障碍是,通过人工神经网络学习到的知识难于理解;学习时间太长,不适于大型数据集。第22页/共91页2023/2/12236,分类与预测 分类和预测是两种重要的数据分析方法,在商业上的应用很多。分类和预测可以用于提取描述重要数据类型或预测未来的数据趋势。分类的目的是提出一个分类函数或分类模型(即分类器)通过分类器将数据对象映射到某一个给定的类别中。数据分类可以分为两步进行。第一步建立模型,用于描述
15、给定的数据集合。通过分析由属性描述的数据集合来建立反映数据集合特性的模型。第二步是用模型对数据对象进行分类。预测的目的是从历史数据记录中自动推导出对给定数据的推广描述,从而能够对事先未知的数据进行预测。第23页/共91页2023/2/1224 分类的方法:决策树:决策树内部节点进行属性值测试,并根据属性值判断由该节点引出的分支,在决策树的叶结点得到结论。内部节点是属性或属性的集合,叶节点代表样本所属的类或类分布。贝叶斯分类:是一种统计学分类方法,可以预测类成员关系关系的可能性,如给定样本属于一个特征类的概率。贝叶斯方法已在文本分类、字母识别、经济预测等领域获得了成功的应用。基于遗传算法分类:模
16、拟生物进化过程中的计算模型,是自然遗传学与计算机科学互相结合、互相渗透而形成的新的计算方法。利用选择、交叉、变异等操作对子代进行操作,优点是问题求解与初始条件无关,搜索最优解的能力极强,可以对各种数据挖掘技术进行优化。第24页/共91页2023/2/1225预测 预测是构造和使用模型评估无标号样本类,或评估给定样本可能具有的属性值或区间值。预测的目的是从历史数据中自动推导出对给定数据的推广描述,从而能对未来数据进行预测。例如,金融系统可以根据顾客信誉卡消费量预测他未来的刷卡消费量或用于信誉证实。推销人员希望在开拓新客户时,找出顾客一些共同特征,预测出潜在顾客群。预测的方法主要是回归统计,包括:
17、线性回归、非线性回归、多元回归、泊松回归、对数回归等。分类也可以用来预测。第25页/共91页2023/2/12267,多媒体数据挖掘 多媒体数据库系统由多媒体数据库管理系统和多媒体数据库构成。其中多媒体数据库用于存储和管理多媒体数据,多媒体数据库管理系统负责对多媒体数据库进行管理。多媒体数据库包括结构化的数据、半结构化的数据和非结构化的数据,如音频数据、视频数据、文本数据和图像数据等。多媒体数据挖掘就是通过综合分析多媒体数据的内容和语义,从大量多媒体数据中发现隐含的、有效的、有价值的、可理解的模式,得出事件的发展趋向和关联关系,为用户提供问题求解层次上的决策支持能力。第26页/共91页2023
18、/2/1227 多媒体数据是指由多种不同类型多媒体数据组成的,包括文本、图形、图像、声音、视频图像、动画等不同类型的媒体数据。为了挖掘多媒体数据,必须对两种或多种类型的媒体数据进行综合挖掘。多媒体挖掘的方法有两种:一种是先从多媒体数据数据库中提取出结构化数据,然后用传统的数据挖掘工具在这些结构化的数据上进行挖掘。另一种解决办法是研究开发可以直接对多媒体数据进行挖掘的工具。第27页/共91页2023/2/1228四、数据挖掘系统与应用 数据挖掘系统的开发工作十分复杂,不仅要有大量的数据挖掘算法,而且其应用领域往往取决于最终用户的知识结构等因素。下面介绍几个数据挖掘系统:SKICAT是MIT喷气推
19、进实验室与天文科学家合作开发的用于帮助天文学家发现遥远的类星体的工具。Health-KEFIR是用于健康状况预警的知识发现系统。TASA是为预测通信网络故障而开发的通信网络预警分析系统。会产生“如果在某一时间段内发生某些预警信息组合,那么其他类型的预警信息将在某个时间范围内发生”的规则。时间段大小由用户定义。R-MINI运用分类技术从噪声中提取有价值的信息。由于是在微弱变化中获取信息,该系统也可以应用于证券领域中的股市行情预测。第28页/共91页2023/2/1229KDW是大型商业数据库中的交互分析系统。包括聚类、分类、总结、相关性分析等多种模式。DBMiner是加拿大Simon Frase
20、r大学开发的一个多任务KDD系统。能够完成多种知识发现,综合了多种数据挖掘技术。Clementine可以把直观的图形用户界面与多种分析技术结合在一起,包括神经网络、关联规则和规则归纳技术。Darwin包含神经网络、决策书和K-邻近三种数据挖掘方法,处理分类、预测和预报问题。DMW是一个用在信用卡欺诈分析方面的数据挖掘工具,支持反向传播神经网络算法,并能以自动和人工模式操作Intelligent Miner是IBM开发的包括人工智能、机器学习、语言分析和知识发现领域成果在内的复杂软件解决方案。第29页/共91页2023/2/1230五,数据预处理为什么需要数据预处理?数据清洗 数据集成与转换数据
21、归约数据离散化与概念层次的构建本章小结第30页/共91页2023/2/1231为什么需要数据预处理?在现实社会中,存在着大量的“脏”数据不完整性(数据结构的设计人员、数据采集设备和数据录入人员)缺少感兴趣的属性感兴趣的属性缺少部分属性值仅仅包含聚合数据,没有详细数据噪音数据(采集数据的设备、数据录入人员、数据传输)数据中包含错误的信息存在着部分偏离期望值的孤立点不一致性(数据结构的设计人员、数据录入人员)数据结构的不一致性Label的不一致性数据值的不一致性第31页/共91页2023/2/1232为什么需要数据预处理?数据挖掘的数据源可能是多个互相独立的数据源关系数据库多维数据库(Data C
22、ube)文件、文档数据库数据转换为了数据挖掘的方便海量数据的处理数据归约(在获得相同或者相似结果的前提下)第32页/共91页2023/2/1233为什么需要数据预处理?没有高质量的数据,就没有高质量的挖掘结果高质量的决策必须基于高质量的数据基础上数据仓库是在高质量数据上的集成第33页/共91页2023/2/1234数据预处理的主要任务数据清理填入缺失数据平滑噪音数据确认和去除孤立点解决不一致性数据集成多个数据库、Data Cube和文件系统的集成数据转换规范化、聚集等数据归约在可能获得相同或相似结果的前提下,对数据的容量进行有效的缩减数据离散化对于一个特定的连续属性,尤其是连续的数字属性,可以
23、把属性值划分成若干区间,以区间值来代替实际数据值,以减少属性值的个数.第34页/共91页2023/2/1235数据预处理的形式数据清理数据集成数据转换数据归约第35页/共91页2023/2/1236主要内容为什么需要数据预处理?数据清洗 数据集成与转换数据归约数据离散化与概念层次的构建本章小结第36页/共91页2023/2/1237数据清洗主要任务补充缺失数据识别孤立点,平滑噪音数据处理不一致的数据第37页/共91页2023/2/1238缺失数据的处理部分数据通常是不可用的在许多元组中部分属性值为空。如:在客户表中的客户收入为空。导致数据缺失的原因数据采集设备的故障由于与其它信息的数据存在不一
24、致性,因此数据项被删除由于不理解或者不知道而未能输入在当时数据输入的时候,该数据项不重要而忽略数据传输过程中引入的错误缺失数据通常需要经过合理的推断予以添加第38页/共91页2023/2/1239缺失数据的处理方法忽略该记录(元组)通常在进行分类、描述、聚类等挖掘,但是元组缺失类标识时该种方法通常不是最佳的,尤其是缺失数据比例比较大的时候手工填入空缺的值枯燥、费时,可操作性差,不推荐使用使用一个全局的常量填充空缺数值给定一个固定的属性值如:未知、不祥、Unknown、Null等简单,但是没有意义第39页/共91页2023/2/1240使用属性的平均值填充空缺数值简单方便、挖掘结果容易产生不精确
25、的结果使用与给定元组同一个类别的所有样本的平均值分类非常重要,尤其是分类指标的选择使用最有可能的值予以填充利用回归、基于推导的使用贝叶斯形式化的方法的工具或者判定树归纳确定利用属性之间的关系进行推断,保持了属性之间的联系缺失数据的处理方法(续)第40页/共91页2023/2/1241噪音数据噪音数据:一个度量(指标)变量中的随机错误或者偏差主要原因数据采集设备的错误数据录入问题数据传输问题部分技术的限制数据转换中的不一致 数据清理中所需要处理的其它问题重复的记录不完整的数据不一致的数据第41页/共91页2023/2/1242噪音数据的处理分箱(Binning)的方法聚类方法检测并消除异常点线性
26、回归对不符合回归的数据进行平滑处理人机结合共同检测由计算机检测可疑的点,然后由用户确认第42页/共91页2023/2/1243处理噪音数据:分箱方法分箱(Binning)方法:基本思想:通过考察相邻数据的值,来平滑存储数据的值基本步骤:首先,对数据进行排序,并分配到具有相同宽度/深度的不同的“箱子”中其次,通过箱子的平均值(Means)、中值(Median)、或者边界值等来进行平滑处理第43页/共91页2023/2/1244分箱(BinningBinning)方法举例对数据进行排序:4,8,9,15,21,21,24,25,26,28,29,34对数据进行分割(相同深度):-Bin 1:4,8
27、,9,15-Bin 2:21,21,24,25-Bin 3:26,28,29,34根据bin中的平均值进行离散化:-Bin 1:9,9,9,9-Bin 2:23,23,23,23-Bin 3:29,29,29,29第44页/共91页2023/2/1245基于聚类分析的平滑处理第45页/共91页2023/2/1246通过线性回归的平滑处理xyy=x+1X1Y1Y1第46页/共91页2023/2/1247主要内容为什么需要数据预处理数据清洗 数据集成与转换数据归约数据离散化与概念层次的构建本章小结第47页/共91页2023/2/1248数据集成数据集成的概念将多个数据源中的数据结合起来存放在一个一
28、致的数据存储中数据源包括:多个数据库、多维数据库和一般的文件数据集成也是数据仓库建设中的一个重要问题数据集成的内容模式集成利用数据库和数据仓库的元数据信息主要工作是识别现实世界中的实体定义冗余数据的处理检测和解决数值冲突对于现实世界中的同一实体,来自于不同数据源的属性值可能不同主要原因:不同的数据表示、度量单位、编码方式以及语义的不同第48页/共91页2023/2/1249模式集成数据类型冲突性别:string(Male、Female)、Char(M、F)、Interger(0、1)日期:Date、DateTime、String数据标签冲突:解决同名异义、异名同义学生成绩、分数度量单位冲突学生
29、成绩百分制:100 0五分制:A、B、C、D、E字符表示:优、良、及格、不及格概念不清最近交易额:前一个小时、昨天、本周、本月?聚集冲突:根源在于表结构的设计 第49页/共91页2023/2/1250冗余数据的处理从多个数据源中抽取不同的数据,容易导致数据的冗余不同的属性在不同的数据源中是不同的命名方式有些属性可以从其它属性中导出,例如:销售额单价销售量有些冗余可以通过相关分析检测到 其中:n是元组的个数,和 分别是A和B的平均值,和 分别是A和B的标准差 元组级的“重复”,也是数据冗余的一个重要方面减少冗余数据,可以大大提高数据挖掘的性能第50页/共91页2023/2/1251数据转换平滑处
30、理:从数据中消除噪音数据聚集操作:对数据进行综合,类似于Data Cube的构建数据概化:构建概念层次数据规范化:将数据集中到一个较小的范围之中最大-最小规范化z-score(零均值)规范化小数范围规范化(01规范化)属性构造构造新的属性并添加到属性集中,以帮助数据挖掘第51页/共91页2023/2/1252数据转换:规范化最大-最小规范化对原始数据进行线性变换保持了原始数据值之间的关系当有新的输入,落在原数据区之外,该方法将面临“越界”错误受到孤立点的影响可能会比较大第52页/共91页2023/2/1253数据转换:规范化(续)z-score(零均值)规范化属性基于平均值和标准差规范化当属性
31、的最大值和最小值未知,或者孤立点左右了最大最小规范化时,该方法有效0-1规范化(小数定标规范化)通过移动属性的小数点位置进行规范化例如A的值为125,那么|A|=125,则j=3,有v=0.125。Where j is the smallest integer such that Max(|)Reduced attribute set:A1,A4,A6YYYNNN第60页/共91页2023/2/1261数据压缩数据压缩:应用数据编码或变换,以便得到数据的归约或压缩表示无损压缩:原数据可以由压缩数据重新构造而不丢失任何信息字符串压缩是典型的无损压缩现在已经有许多很好的方法但是它们只允许有限的数据
32、操作有损压缩:只能重新构造原数据的近似表示 影像文件的压缩是典型的有损压缩典型的方法:小波变换、主要成分分析第61页/共91页2023/2/1262数值归约数值归约:通过选择替代的、“较小”的数据表示形式来减少数据量有参的方法假设数据符合某些模型,通过评估模型参数,仅需要存储参数,不需要存储实际数据(孤立点也可能被存放)典型方法:对数线性模型,它估计离散的多维概率分布无参的方法不存在假想的模型典型方法:直方图、聚类和抽样第62页/共91页2023/2/1263直方图类似于分箱技术,是一种流行的数据归约方式将属性值划分为不相交的子集,或“桶”桶安放在水平轴上,而桶的高度(和面积)是该桶所代表的值
33、的平均频率。每个桶只表示单个属性值,则称其为“单桶”。通常,“桶”表示给定属性的一个连续空间可以通过编程,动态修改部分参数,进行合理构造。count51015202530123456789101-1011-2021-30510152025132515PricePricecount第63页/共91页2023/2/1264主要内容为什么需要数据预处理?数据清洗 数据集成与转换数据归约数据离散化与概念层次的构建本章小结第64页/共91页2023/2/1265数据离散化和概念层次属性值分类枚举型有序的无序的连续型:如 Real类型数据离散化对于一个特定的连续属性,可以把属性值划分成若干区间,以区间值来
34、代替实际数据值,以减少属性值的个数。概念层次利用高层的概念(如儿童、青年、中年、老年等)来代替低层的实际数据值(实际年龄),以减少属性值的个数。第65页/共91页2023/2/1266数值数据的离散化和概念分层建立的方法分箱(Binning)直方图分析聚类分析的方法根据自然分类进行分割第66页/共91页2023/2/1267分箱方法:一种简单的离散化技术相同宽度(距离)数据分割将数据分成N等份,各个等份数据之间具有相同的距离如果 A 和 B 分别为属性值中的最大值和最小值,那么各个数据等份之间的距离为:W=(B-A)/N.异常点将会扮演很重要的角色倾斜的数据不能很好的解决相同深度(频率)数据分
35、割将数据分成N等份,各个等份具有相同的数据个数。具有较好的可伸缩性适合于数据分类的情况第67页/共91页2023/2/1268离散化:直方图方法将数据分割到若干个桶之中,用桶中的平均值(或求和等)来表示各个桶。可以通过编程,动态修改部分参数,进行合理构造。count51015202530123456789101-1011-2021-30510152025132515PricePricecount第68页/共91页2023/2/1269离散化:聚类分析方法将数据按照“类内最大相似度,类间最小相似度的原则”对数据进行有效聚类利用聚类的中心点来表示该类所包含的对象数据聚类将非常有效,但是必须保证数据
36、中没有噪音数据第69页/共91页2023/2/1270按照自然分类进行数据分割利用3-4-5 法则对数字型数据分类,将数据分成若干个“自然”的区间:如果在所有数字的最高位覆盖 3,6,7或9个不同的值,则将数据分成3段。3(1,1,1)6(2,2,2)7(2,3,2)9(3,3,3)如果在所有数字的最高位覆盖 2,4,8个不同的值,则将数据分成4 段。如果在所有数字的最高位覆盖 1,5,10个不同的值,则将数据分成 5 段。第70页/共91页2023/2/12713-4-5 法则举例n例例1:包含数据:包含数据:101、110、203、222、305、315n方法:最高位包含方法:最高位包含3
37、个值(个值(1、2、3)n分成分成100,200),),200,300),),300,400)三段)三段n例例2:包含数据:包含数据:101、110、103、422、405、415,400n方法:最高位包含方法:最高位包含2个值(个值(1、4)n分成分成100,150),),150,200),400,450),450,500)四段)四段n例例3:包含数据:包含数据:101、210、203、322、305、415,500n方法:最高位包含方法:最高位包含5个值(个值(1、2、3、4、5)n分成分成100,200),),200,300),300,400),400,500),),500,600)五段
38、五段第71页/共91页2023/2/1272分类数据的概念分层概念分层是由用户或专家对具有偏序关系的属性的一种层次关系的显式表示。也是一种数据分类的显式表示。概念层次的获得隐式存储于数据库中。如:地址。由专家显式给出。借助数据分析自动生成。概念层次的表示基于实例。如:freshman,.,seniorundergraduate.;基于数据库表模式。如:address(city,province,country)。基于规则。如:good(x)undergraduate(x)gpa(x)3.5。第72页/共91页2023/2/1273概念层次树举例概念层次树将大大减少挖掘数据的数据量。countr
39、yprovince_or_ statecitystreet15 distinct values65 distinct values3567 distinct values674,339 distinct values第73页/共91页2023/2/1274主要内容主要内容l为什么需要数据预处理为什么需要数据预处理?l数据清洗数据清洗 l数据集成与转换数据集成与转换l数据归约数据归约l数据离散化与概念层次的构建数据离散化与概念层次的构建l本章小结本章小结第74页/共91页2023/2/1275本章小结数据的预处理无论对于数据仓库和数据挖掘都是非常重要的一个环节数据预处理包括数据清理数据集成数据归
40、约和特征选取数据的离散化数据预处理涉及面广,现已建立了一系列的方法,但是目前仍然是一个非常活跃的研究领域第75页/共91页2023/2/1276六,可视化数据挖掘可视化:使用计算机图形学创建可视化图像,帮助用户理解复杂,大规模数据可视化数据挖掘:使用可视化技术,从大规模数据集中发现隐含,有用知识的过程信息可视化数据挖掘可视化 数据挖掘第76页/共91页2023/2/1277信息可视化信息可视化:结合了科学可视化、人机交互、数据挖掘、图像技术、图形学、认知科学等诸多学科的理论和方法,而逐步发展起来的。信息可视化参考模型第77页/共91页2023/2/1278可视化数据挖掘可视化的目的提供对大规模
41、数据集定性的理解查看数据中的模式,趋势,结构,不规则性,关系等帮助寻找感兴趣的区域,为进一步定量分析提供合适的参数为计算机得出的结果提供可视化的证明第78页/共91页2023/2/1279可视化数据挖掘可视化与数据挖掘的结合数据可视化数据挖掘结果可视化数据挖掘过程可视化交互式可视化数据挖掘第79页/共91页2023/2/1280数据可视化数据可视化以下面两种方式观察数据库或数据仓库的数据:在不同的粒度或抽象层面观察属性或维度的不同结合数据可以被表示成不同的格式,柱状图、饼状图、散点图、三维立方体、曲线、数据分布图表等 第80页/共91页2023/2/1281MineSet 数据可视化数据的直方
42、图,均值,中值,标准差,四分位数第81页/共91页2023/2/1282数据挖掘结果可视化以视图的形式给出由数据挖掘算法得出的结果或知识例如决策树贝叶斯网络关联规则聚类孤立点第82页/共91页2023/2/1283SAS Enterprise Miner:scatter plots 第83页/共91页2023/2/1284Visualization of association rules in MineSet 3.0第84页/共91页2023/2/1285Visualization of a decision tree in MineSet 3.0第85页/共91页2023/2/1286Vi
43、sualization of cluster groupings in SAS第86页/共91页2023/2/1287数据挖掘过程可视化将数据挖掘各种处理过程用可视化的方式呈现给用户,可以看到:数据是如何被提取的是从哪个数据库或数据仓库提取的数据被选择数据如何被清理,整合,处理和挖掘的在数据挖掘中采用什么方法数据被存储在哪里第87页/共91页2023/2/1288Visualization of Data Mining Processes by Clementine可视化流程使得数据观察和交互的变得简单方便 第88页/共91页2023/2/1289交互式可视化数据挖掘使用可视化工具在数据挖掘过程中帮助用户作出更加合理的挖掘决定更好的理解数据和样本用户可以根据理解作出决定用户可以根据领域知识作出决定可视化结果使用户能够指导下次算法执行第89页/共91页2023/2/1290 谢谢!第90页/共91页2023/2/1291谢谢您的观看!第91页/共91页