数据的分析全章教案(原创).docx

上传人:太** 文档编号:72729212 上传时间:2023-02-13 格式:DOCX 页数:14 大小:44.96KB
返回 下载 相关 举报
数据的分析全章教案(原创).docx_第1页
第1页 / 共14页
数据的分析全章教案(原创).docx_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《数据的分析全章教案(原创).docx》由会员分享,可在线阅读,更多相关《数据的分析全章教案(原创).docx(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第15周周2课题平均数(第一课时)教 学 目 标知识与能力使学生理解数据的权和加权平均数的概念过程与方法使学生掌握加权平均数的计算方法情感、态度 和价值观通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作 用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的 特征数重 点会求加权平均数难 点对“权”的理解主要教学过程学生活动引 入 新 课、若不选择教材中的引入问题,也可以替换成更贴近学生学习生 活中的实例,下举一例可供借鉴参考。某校初二年级共有4个班,在一次数学考试中参考人数和成绩如 下:班级1班2班3班4班参考人数40424532平均成绩80818279求该校初二年级在这次

2、数学考试中的平均成绩?下述计算方法是否合理?为什么?4二新课教学例习题分析:例1和例2均为计算数据加权平均数型问题,因为是初学尤 其之前与平均数计算公式已经作过比较,所以这里应该让学生搞 明白问题中是否有权数,即是选择普通的平均数计算还是加权平 均数计算,其次若用加权平均数计算,权数又分别是多少?例2 的题意理解很重要,一定要让学生体会好这里的几个百分数在总 成绩中的作用,它们的作用与权的意义相符,实际上这几个百分 数分别表示几项成绩的权。随堂练习:1、老师在计算学期总平均分的时候按如下标准:作业占100%、 测验占30%、期中占35%、期末考试占35%,小关和小兵的成绩 如下表:学生作业测验

3、期中考 试期末考 试小关80757188小兵76806890一引入新课一引入新课二新课教学除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。 例如,通过学生观看2004年奥运会刘翔勇夺110米栏冠军的录像,进而 引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入 自然真实,学生也更感兴趣一些。例习题的意图分析:1 .教材P125的讨论问题的意图:(1) .创设问题情境,引起学生的学习兴趣和好奇心。(2) .为引入方差概念和方差计算公式作铺垫。(3) .介绍了一种比较直观的衡量数据波动大小的方法一一画折线法。(4) .客观上反映了在解决某些实际问题时,求平均数或求极

4、差等方法的 局限性,使学生体会到学习方差的意义和目的。2 .教材P154例1的设计意图:(1) .例1放在方差计算公式和利用方差衡量数据波动大小的规律之后, 不言而喻其主要目的是及时复习,巩固对方差公式的掌握。(2) .例1的解题步骤也为学生做了一个示范,学生以后可以模仿例1的 格式解决其他类似的实际问题。例题的分析:教材P154例1在分析过程中应抓住以下几点:1 .题月中“整齐”的含义是什么?说明在这个问题中要研究一组数据的 什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据 波动大小,这一环节是明确题意。2 .在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均 数,因为

5、公式中需要平均值,这个问题可以使学生明确利用方差计算 步骤。3 .方差怎样去体现波动大小?这一问题的提出主要复习巩固方差,反映数据波动大小的规律。随堂练习:1.从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位: cm)甲:9、10 11、12、7、13、10、8、12、8;乙:8, 13、12、11、10、12、7、7、9、11;问:(1)哪种农作物的苗长的比较高?(2)哪种农作物的苗长得比较整齐?2.段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所 示,谁的成绩比较稳定?为什么?测试次数12345段巍1314131213金志强1013161412课后练习:1.已知一

6、组数据为2、0、-1、3、-4,则这组数据的方差为2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下: 甲:7、8、6、8、6、5、9、10、7、4乙:9、5、7、8、7、6、8、6、7、7经过计算,两人射击环数的平均数相同,但s,所以确定去参加比赛。3.甲、乙两台机床生产同种零件,10天出的次品分别是()甲:0、1、0、2、2、0、3、1、2、4乙:2、3、1、2、0、2、1、1、2、1分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能 较好?4,小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)小爽小兵如果根据这几次成绩选拔一人参加比赛,你会选谁呢?作业布置

7、课后反思2、为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进 行测量,结果如下表:(单位:小时)寿命450550600650700只数2010301525求这些灯泡的平均使用寿命?课后练习:1、在一个样本中,2出现了次,3出现了 X2次,4出现了 X3次,5出现了 次,则这个样本的平均数为.2、某人打靶,有a次打中x环,b次打中),环,则这个人平均 每次中靶环。3、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从 笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩 20%、面试占30%、实习成绩占50%,各项成绩如表所示:应聘者笔试面试实习甲858390乙808592试判断谁会被

8、公司录取,为什么?4、在一次英语口试中,己知50分1人、60分2人、70分5人、 90分5人、100分1人,其余为84分。已知该班平均成绩为80 分,问该班有多少人?答案12演+3X2+45+5乙2x+x2 +x3 +x4a + b3. X甲-2乙被录取4. 39人作业布置课后反思第15周周3课题平均数(第二课时)教 学 目知识与能力加深对加权平均数的理解过程与方法会根据频数分布表求加权平均数,从而解决一些实际问题标情感、态度 和价值观根据频数分布表求加权平均数根据频数分布表求加权平均数主要教学过程主要教学过程学生活动采用教材原有的引入问题,设计的几个问题如下:(1)、请同学读P140探究问题

9、,依据统计表可以读出哪些信息(2)、这里的组中值指什么,它是怎样确定的?(3)、第二组数据的频数5指什么呢?(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值 和组中值有什么关系。1、某校为了了解学生作课外作业所用时间的情况,对学生作课 外作业所用时间进行调查,下表是该校初二某班50名学生某一 天做数学课外作业所用时间的情况统计表(1)、第二组数据的组中值是多少?(2)、求该班学生平均每天做数学作业所用时间二新课教学二新课教学所用时间t(分钟)人数2、某班40名学生 身高情况如下图,请计算该班学 生平均身高0t1040VW620t2014课后练成 1、某公 员工,4 部门及* 创的年手

10、L数司有15名 If门所在的 1应每人所 润如下表30t401340VtW50950 210、 150求这15个销售员该月销量的中位数和众数。假设销售部负责人把每位营销员的月销售定额定为320件,你认 为合理吗?如果不合理,请你制定一个合理的销售定额并说明理 由。2、某商店3、4月份出售某一品牌各种规格的空调,销售台数如 表所示:X格1匹2匹函数、12台20台8台4台4月16台30台14台8台根据表格【可答问题:商店出售的各种规格空调中,众数是多少?假如你是经理,现要进货,6月份在有限的资金下进货单位将如 何决定?答案:1. (1) 210件、210件 (2)不合理。因为15人中有 13人的销

11、售额达不到320件(320虽是原始数据的平均数,却 不能反映营销人员的一般水平),销售额定为210件合适,因为 它既是中位数又是众数,是大部分人能达到的额定。课后练习.数据 8、9、9、8、10、8、99、8、10、7、9、9、8 的中位 数是众数是_1 . 一组数据23、27、20、18、X、12,它的中位数是21,则X 的值是.2 .数据92、96、98、100、X的众数是96,则其中位数和平均 数分别是()C3 .如果在一组数据中,23、25、28、22出现的次数依次为2、 5、3、4次,并且没有其他的数据,则这组数据的众数和中 位数分别是()24 C5.随机抽取我市一年(按365天计)

12、中的30天平均气温状况 如下表:温度()-8-1715212430天数3557622请你根据上述数据回答问题:(1) .该组数据的中位数是什么?(2) .若当气温在1825c为市民“满意温度”,则我市一年中 达到市民“满意温度”的大约有多少天?作业布置课后反思第15周周5课题中位数和众数(第二课时)教 学 目 标知识与能力进一步认识平均数、众数、中位数都是数据的代表。过程与方法通过本节课的学习还应了解平均数、中位数、众数在描述数据时差异。情感、态度 和价值观能灵活应用这三个数据代表解决实际问题重 点了解平均数、中位数、众数之间的差异。难 点灵活运用这三个数据代表解决问题。主要教学过程学生活动引

13、 入 新 课平均数计算要用到所有的数据,它能够充分利用所有的数据 信息,但它受极端值的影响较大.众数是当一组数据中某一数据重复出现较多时,人们往往关 心的一个量,众数不受极端值的影响,这是它的一个优势,中位 数的计算很少也不受极端值的影响.平均数的大小与一组数据中的每个数据均有关系,任何一个 数据的变动都会相应引起平均数的变动.中位数仅与数据的排列位置有关,某些数据的移动对中位数没有 影响,中位数可能出现在所给数据中也可能不在所给的数据中, 当一组数据中的个别数据变动较大时: 可用中位数描述其趋势.二新课教学例习题的意图分析:教材P146例6的意图(1)、这是在学习过数据的收集、整理、描述与分

14、析之后涉 及到这四个环节的一个例题,从分析和解答过程来看它交待了该 如何完整的进行这几个过程,为该怎样综合运用已学的统计知识 解决实际问题作了一个标掂范例。教师在授课过程中也应注意, 对已学知识的巩固复习。(2)、从分析和解答过程来看,此例题的一个主要意图是区 分平均数、众数和中位数这三个数据代表的异同。(3)、由例题中(2)问和(3)问的不同,导致结果的不同, 其目的是告诉学生应该根据题目具体要求来灵活运用三个数据 代表解决问题。(4)、本例题也客观的反映了数学知识对生活实践的指导有 重要的意义,也体现r统计知识与生活实践是紧密联系的。 课堂引入:本节课的课堂引入可以通过复习平均数、中位数和

15、众数定义 开始,为完成重点、突破难点作好铺垫,没有必要牵强的加入一 个生活实例作为引入问题。例习题的分析:例题6中第一问是在巩固平均数定义、中位数定义和众数的 定义。可以引导学生从问题中词语特点分析它们分别指哪个数据 代表,教师也可以顺便加一个发散性问题,一般地哪些词语是指 平均数、中位数和众数呢?例题6中的第二问学生一般不易想到,教师要将“较高目标”衡 量标准引向三个数据代表身上,这样学生就不难回答了。第三问要抓住一半左右应与哪个数据代表的意义相符这个问题。 即要很好的回答第三问,学生头脑必须很清楚平均数、中位数、 众数的特点。随堂练习:1、在一次环保知识竞赛中,某班50名学生成绩如下表所示

16、:得 分5060708090100110120人数2361415541分别求出这些学生成绩的众数、中位数和平均数.2、公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄 如下:(单位:岁)甲群:13、13、14、15、15、15、16、17、17乙群:3、4、4、5、5、6、6、54、57。(1)、甲群游客的平均年龄是 岁,中位数是一岁,众数是 岁,其中能较好反映甲群游客年龄特征的是。(2)、乙群游客的平均年龄是 岁,中位数是 岁,众数是 岁。其中能较好反映乙群游客年龄特征的是 o课后练习: 1、某公司的33名职工的月工资(以元为单位)如下:职 员董事 长副董 事长董事总经理经理管理 员职员

17、人 数11215320工资5500500035003000250020001500(1)、求该公司职员月工资的平均数、中位数、众数?(2)、假设副董事长的工资从5000元提升到20000元,董事长 的工资从5500元提升到30000元,那么新的平均数、中位数、 众数又是什么?(精确到元)(3)、你认为应该使用平均数和中位数中哪一个来描述该公司职 工的工资水平?作业布置课后反思第15周周6课题极差教 学 目 标知识与能力理解极差的定义,知道极差是用来反映数据波动范围的一个最过程与方法会求一组数据的极差重点会求一组数据的极差难 点本节课内容较容易接受,不存在难点主要教学过程学生活动引 入 新 课引

18、入问题可以仍然采用教材上的“乌鲁木齐和广州的气温情”为 了更加形象直观一些的反映极差的意义,可以画出温度折线图, 这样极差之所以用来反映数据波动范围就不言而喻了。二新课教学例习题的意图分析教材P151引例的意图(1)、主要目的是用来引入极差概念的(2)、可以说明极差在统计学家族的角色一一反映数据波动 范围的量(3)、交待了求一组数据极差的方法。例习题分析本节课在教材中没有相应的例题,教材P152习题分析问题1可由极差计算公式直接得出,由于差值较大,结合本题 背景可以说明该村贫富差距较大。问题2涉及前一个学期统计 知识首先应回忆复习已学知识。问题3答案并不唯一,合理即可。 随堂练习:1、一组数据

19、:473、865、368、774、539、474 的极差是,一组数据 1736、1350、-2114、-1736 的极差是.2、一组数据3、-l、0、2、X的极差是5,且X为自然数,则X=.3、下列几个常见统计量中能够反映一组数据波动范围的是 ()A.平均数B.中位数C.众数D.极差4、一组数据X1、X2X”的极差是8,则另一组数据2X1+1、2X2+I,2X”+1的极差是()A. 8B.16 C七、课后练习:B.16 C在一次数学考试中,第一小组14名学生的成绩与全组平均分的差是 2、3、-5、10、12、8、2、-1、4、-10、-2、5、5、-5,那 么这个小组的平均成绩是()A. 87

20、 B. 83 C. 85 D 无法确定4、若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组数据的平均数是,极差是O5、某活动小组为使全小组成员的成绩都要达到优秀,打算实施 “以优帮困”计戈U,为此统计了上次测试各成员的成绩(单位: 分)90、 95 87、 92、 63、 54、 82、 76、 55、 100、 45、 80计算这组数据的极差,这个极差说明什么问题?将数据适当分组,做出频率分布表和频数分布直方图。板书设计作业布置课后反思第15周周天课题方差(第一课时)教 学 目 标知识与能力了解方差的定义和计算公式过程与方法理解方差概念的产生和形成的过程。情感、态度和价值 观会用方差计算公式来比较两组数据的波动大小。重 点方差产生的必要性和应用方差公式解决实际问题。难 点理解方差公式主要教学过程学生活动

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 解决方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁