《《考研资料》2011年全国硕士研究生入学统一考试(数一)试题及答案.doc》由会员分享,可在线阅读,更多相关《《考研资料》2011年全国硕士研究生入学统一考试(数一)试题及答案.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2011年全国硕士研究生入学统一考试数学(一)试题一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)1、 曲线的拐点是( )A (1,0) B (2,0) C (3,0) D (4,0)2、设数列单调减少,且。无界,则幂级数的收敛域为( )A B C D 3、 设函数具有二阶连续的导数,且.。则函数在点处取得极小值的一个充分条件是( )A B C D 4、设 ,则 的大小关系是( )A B C D 5、设A为3阶矩阵,把A的第二列加到第一列得到矩阵B ,再交换B的第二行与第3行得到单位阵E,记,则A=( )A B
2、 C D 6、设是4阶矩阵,为A的伴随矩阵。若是的一个基础解系,则的基础解系可为( )A B C D 7、设为两个分布函数,且连续函数为相应的概率密度,则必为概率密度的是( )A B C D +8、设随机变量相互独立,且都存在,记,则( )A B C D 二、填空题:914小题,每小题4分,共24分,请将答案写在答题纸指定的位置上。9、曲线的弧长为_10、微分方程满足条件的解为_11、设函数,则12、设是柱面方程与平面的交线,从轴正向往轴负向看去为逆时针方向,则曲线积分13、若二次曲面的方程,经正交变换化为,则14、设二维随机变量,则三、解答题:1523小题,共94分.请将解答写在答题纸指定的
3、位置上,解答应写出文字说明,证明过程或演算步骤。15、(本题满分10分) 求极限16、(本题满分9分)设函数,其中具有二阶连续的偏导数,函数可导且在处取得极值.求17、(本题满分10分)求方程的不同实根的个数,其中为参数。18、(本题满分10分)证明:对任意的正整数,都有成立;设,证明数列收敛.19、(本题满分11分)已知函数具有二阶连续的偏导数,且,其中计算二重积分20、(本题满分11分)设向量组,不能由向量组,线性表示;(1) 求的值;(2) 将用线性表示;21、(本题满分11分)A为3阶实对称矩阵,A的秩为2,且求(1)A的特征值与特征向量 (2) 矩阵A22、(本题满分11分)设随机变
4、量X与Y的概率分布分别为X01Y-101且求(1)二维随机变量(X,Y)的概率分布; (2)的概率分布(3)X与Y的相关系数23、(本题满分11分)设是来自正态总体的简单随机样本,其中已知,未知.为样本均值和样本方差.求(1)求参数的最大似然估计 (2) 计算E和D2011年全国硕士研究生入学统一考试数学(一)试题答案解析1.【答案】【考点分析】本题考查拐点的判断。直接利用判断拐点的必要条件和第二充分条件即可。【解析】由可知分别是的一、二、三、四重根,故由导数与原函数之间的关系可知,故(3,0)是一拐点。2. 【答案】【考点分析】本题考查幂级数的收敛域。主要涉及到收敛半径的计算和常数项级数收敛
5、性的一些结论,综合性较强。【解析】无界,说明幂级数的收敛半径;单调减少,说明级数收敛,可知幂级数的收敛半径。因此,幂级数的收敛半径,收敛区间为。又由于时幂级数收敛,时幂级数发散。可知收敛域为。3. 【答案】【考点分析】本题考查二元函数取极值的条件,直接套用二元函数取极值的充分条件即可。【解析】由知,所以,要使得函数在点(0,0)处取得极小值,仅需,所以有4. 【答案】【考点分析】本题考查定积分的性质,直接将比较定积分的大小转化为比较对应的被积函数的大小即可。【解析】时,因此,故选(B)5. 【答案】【考点分析】本题考查初等矩阵与初等变换的关系。直接应用相关定理的结论即可。【解析】由初等矩阵与初
6、等变换的关系知,所以,故选(D)6. 【答案】【考点分析】本题考查齐次线性方程组的基础解系,需要综合应用秩,伴随矩阵等方面的知识,有一定的灵活性。【解析】由的基础解系只有一个知,所以,又由知,都是的解,且的极大线生无关组就是其基础解系,又,所以线性相关,故或为极大无关组,故应选(D)7. 【答案】【考点分析】本题考查连续型随机变量概率密度的性质。【解析】检验概率密度的性质:;。可知为概率密度,故选()。8. 【答案】【考点分析】本题考查随机变量数字特征的运算性质。计算时需要先对随机变量进行处理,有一定的灵活性。【解析】由于可知故应选(B)9. 【答案】 【考点分析】本题考查曲线弧长的计算,直接
7、代公式即可。【解析】10. 【答案】【考点分析】本题考查一阶线性微分方程的求解。先按一阶线性微分方程的求解步骤求出其通解,再根据定解条件,确定通解中的任意常数。【解析】原方程的通解为由,得,故所求解为11. 【答案】【考点分析】本题考查偏导数的计算。【解析】。故。12. 【答案】【考点分析】本题考查第二类曲线积分的计算。首先将曲线写成参数方程的形式,再代入相应的计算公式计算即可。【解析】曲线的参数方程为,其中从到。因此13. 【答案】【考点分析】本题考查二次型在正交变换下的标准型的相关知识。题目中的条件相当于告诉了二次型的特征值,通过特征值的相关性质可以解出。【解析】本题等价于将二次型经正交变
8、换后化为了。由正交变换的特点可知,该二次型的特征值为。该二次型的矩阵为,可知,因此。14. 【答案】【考点分析】:本题考查二维正态分布的性质。【解析】:由于,由二维正态分布的性质可知随机变量独立。因此。由于服从,可知,则。15. 【答案】【考点分析】:本题考查极限的计算,属于形式的极限。计算时先按未定式的计算方法将极限式变形,再综合利用等价无穷小替换、洛必达法则等方法进行计算。【解析】:16. 【答案】【考点分析】:本题综合考查偏导数的计算和二元函数取极值的条件,主要考查考生的计算能力,计算量较大。【解析】:由于在处取得极值,可知。故17. 【答案】时,方程只有一个实根时,方程有两个实根【考点
9、分析】:本题考查方程组根的讨论,主要用到函数单调性以及闭区间上连续函数的性质。解题时,首先通过求导数得到函数的单调区间,再在每个单调区间上检验是否满足零点存在定理的条件。【解析】:令,则,(1) 当时,在单调递减,故此时的图像与轴与只有一个交点,也即方程只有一个实根(2) 时,在和上都有,所以在和是严格的单调递减,又,故的图像在和与轴均无交点(3) 时,时,在上单调增加,又知,在上只有一个实根,又或都有,在或都单调减,又,所以在与轴无交点,在上与轴有一个交点综上所述:时,方程只有一个实根时,方程有两个实根18. 【考点分析】:本题考查不等式的证明和数列收敛性的证明,难度较大。(1)要证明该不等
10、式,可以将其转化为函数不等式,再利用单调性进行证明;(2)证明收敛性时要用到单调有界收敛定理,注意应用(1)的结论。【解析】:(1)令,则原不等式可化为。先证明:令。由于,可知在上单调递增。又由于,因此当时,。也即。再证明:令。由于,可知在上单调递增。由于,因此当时,。也即。因此,我们证明了。再令由于,即可得到所需证明的不等式。(2),由不等式可知:数列单调递减。又由不等式可知:。因此数列是有界的。故由单调有界收敛定理可知:数列收敛。19. 【答案】:【考点分析】:本题考查二重积分的计算。计算中主要利用分部积分法将需要计算的积分式化为已知的积分式,出题形式较为新颖,有一定的难度。【解析】:将二
11、重积分转化为累次积分可得首先考虑,注意这是是把变量看做常数的,故有由易知。故。对该积分交换积分次序可得:再考虑积分,注意这里是把变量看做常数的,故有因此20. 【答案】:;【考点分析】:本题考查向量的线性表出,需要用到秩以及线性方程组的相关概念,解题时注意把线性表出与线性方程组的解结合起来。【解析】: 由于不能由表示 可知,解得 本题等价于求三阶矩阵使得可知计算可得因此21. 【答案】:(1)的特征值分别为1,-1,0,对应的特征向量分别为,(2)【考点分析】:实对称矩阵的特征值与特征向量,解题时注意应用实对称矩阵的特殊性质。【解析】:(1) 可知:1,-1均为的特征值,与分别为它们的特征向量
12、,可知0也是的特征值而0的特征向量与,正交设为0的特征向量有 得 的特征值分别为1,-1,0 对应的特征向量分别为, (2) 其中, 故22. 【答案】:(1) X Y 0 1-101/301/30101/3(2) -1 0 1 P 1/3 1/3 1/3(3)【考点分析】:本题考查二维离散型分布的分布律及相关数字特征的计算。其中,最主要的是第一问联合分布的计算。【解析】:(1)由于,因此。故,因此再由可知同样,由可知这样,我们就可以写出的联合分布如下: (2)可能的取值有,其中,则有。因此,的分布律为 -1 0 1 P 1/3 1/3 1/3(3),故23. 【答案】:(1)(2)【考点分析】:本题考查参数估计和随机变量数字特征的计算,有一定的难度。在求的最大似然估计时,最重要的是要将看作一个整体。在求的数学期望和方差时,则需要综合应用数字特征的各种运算性质和公式,难度较大。【解析】:(1)似然函数则令可得的最大似然估计值,最大似然估计量(2)由随机变量数字特征的计算公式可得由于,由正态分布的性质可知。因此,由的性质可知,因此,故。