通信原理实验(共8页).doc

上传人:飞****2 文档编号:7255833 上传时间:2022-02-22 格式:DOC 页数:8 大小:2.10MB
返回 下载 相关 举报
通信原理实验(共8页).doc_第1页
第1页 / 共8页
通信原理实验(共8页).doc_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《通信原理实验(共8页).doc》由会员分享,可在线阅读,更多相关《通信原理实验(共8页).doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上实验五 抽样定理实验一、实验目的1、 了解抽样定理在通信系统中的重要性。2、 掌握自然抽样及平顶抽样的实现方法。3、 理解低通采样定理的原理。4、 理解实际的抽样系统。5、 理解低通滤波器的幅频特性对抽样信号恢复的影响。6、 理解低通滤波器的相频特性对抽样信号恢复的影响。7、 理解带通采样定理的原理。二、实验器材1、 主控&信号源、3号模块 各一块2、 双踪示波器 一台3、 连接线 若干三、实验原理1、实验原理框图图1-1 抽样定理实验框图2、实验框图说明抽样信号由抽样电路产生。将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶

2、抽样信号。平顶抽样和自然抽样信号是通过开关S1切换输出的。抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。要注意,这里的数字滤波器是借用的信源编译码部分的端口。在做本实验时与信源编译码的内容没有联系。四、实验步骤实验项目一 抽样信号观测及抽样定理验证概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定

3、理。1、关电,按表格所示进行连线。源端口目标端口连线说明信号源:MUSIC模块3:TH1(被抽样信号) 将被抽样信号送入抽样单元 信号源:A-OUT模块3:TH2(抽样脉冲)提供抽样时钟模块3:TH3(抽样输出) 模块3:TH5(LPF-IN)送入模拟低通滤波器 2、开电,设置主控菜单,选择【主菜单】【通信原理】【抽样定理】。调节主控模块的W1使A-out输出峰峰值为3V。3、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。4、实验操作及波形观测。(1)观测并记录自然抽样前后的信号波形:设置开关S

4、13#为“自然抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。 (2)观测并记录平顶抽样前后的信号波形:设置开关S13#为“平顶抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。 (3)观测并对比抽样恢复后信号与被抽样信号的波形:设置开关S13#为“自然抽样”档位,用示波器观测MUSIC主控&信号源和LPF-OUT3# ,以100Hz的步进减小A-OUT主控&信号源的频率,比较观测并思考在抽样脉冲频率多小的情况下恢复信号有失真。 频率为8900HZ时, 频率为8800HZ时, 频率为8700HZ时, 实验项目二 滤波器幅频特性对抽样信号恢复的影响概述:该项目是

5、通过改变不同抽样时钟频率,分别观测和绘制抗混叠低通滤波和fir数字滤波的幅频特性曲线,并比较抽样信号经这两种滤波器后的恢复效果,从而了解和探讨不同滤波器幅频特性对抽样信号恢复的影响。1、测试抗混叠低通滤波器的幅频特性曲线。(1)关电,按表格所示进行连线。源端口目标端口连线说明信号源:A-OUT模块3:TH5(LPF-IN)将信号送入模拟滤波器(2)开电,设置主控模块,选择【信号源】【输出波形】和【输出频率】,通过调节相应旋钮,使A-OUT主控&信号源输出频率5KHz、峰峰值为3V的正弦波。(3)此时实验系统初始状态为:抗混叠低通滤波器的输入信号为频率5KHz、幅度3V的正弦波。(4)实验操作及

6、波形观测。用示波器观测LPF-OUT3#。以100Hz步进减小A-OUT主控&信号源输出频率,观测并记录LPF-OUT3#的频谱。记入如下表格:A-OUT频率/Hz基频幅度/V5K4.5K3.4K3.0K由上述表格数据,画出模拟低通滤波器幅频特性曲线。思考:对于3.4KHz低通滤波器,为了更好的画出幅频特性曲线,我们可以如何调整信号源输入频率的步进值大小?答:低通滤波器的截止频率为3.4kHz,则如果选取0.68kHz的整数倍测幅频得到的曲线会更接近理论,可将信号源输入频率的步进值调整为680Hz。2、测试fir数字滤波器的幅频特性曲线。(1)关电,按表格所示进行连线。源端口目标端口连线说明信

7、号源:A-OUT模块3:TH13(编码输入)将信号送入数字滤波器(2)开电,设置主控菜单:选择【主菜单】【通信原理】【抽样定理】【FIR滤波器】。调节【信号源】,使A-out输出频率5KHz、峰峰值为3V的正弦波。(3)此时实验系统初始状态为:fir滤波器的输入信号为频率5KHz、幅度3V的正弦波。(4)实验操作及波形观测。用示波器观测译码输出3#,以100Hz的步进减小A-OUT主控&信号源的频率。观测并记录译码输出3#的频谱。记入如下表格:A_out的频率/Hz基频幅度/V5K4K3K2K.由上述表格数据,画出fir低通滤波器幅频特性曲线。思考:对于3KHz低通滤波器,为了更好的画出幅频特

8、性曲线,我们可以如何调整信号源输入频率的步进值大小?答:调整信号源输入频率的步进值为600Hz,能更好的画出幅频特性曲线。3、分别利用上述两个滤波器对被抽样信号进行恢复,比较被抽样信号恢复效果。(1)关电,按表格所示进行连线:源端口目标端口连线说明信号源:MUSIC模块3:TH1(被抽样信号)提供被抽样信号信号源:A-OUT模块3:TH2(抽样脉冲)提供抽样时钟模块3:TH3(抽样输出)模块3:TH5(LPF-IN)送入模拟低通滤波器模块3:TH3(抽样输出)模块3:TH13(编码输入)送入FIR数字低通滤波器(2)开电,设置主控菜单,选择【主菜单】【通信原理】【抽样定理】【FIR滤波器】。调

9、节W1主控&信号源使信号A-OUT输出峰峰值为3V左右。(3)此时实验系统初始状态为:待抽样信号MUSIC为3K+1K正弦合成波,抽样时钟信号A-OUT为频率9KHz、占空比20%的方波。(4)实验操作及波形观测。对比观测不同滤波器的信号恢复效果:用示波器分别观测LPF-OUT3#和译码输出3#,以100Hz步进减小抽样时钟A-OUT的输出频率,对比观测模拟滤波器和FIR数字滤波器在不同抽样频率下信号恢复的效果。(频率步进可以根据实验需求自行设置。)思考:不同滤波器的幅频特性对抽样恢复有何影响? 当频率为8900HZ时, 当频率为8800HZ时, 答:模拟滤波器更逼近幅频特性的曲线,而数字滤波

10、器可以实现想位的匹配。实验项目三 滤波器相频特性对抽样信号恢复的影响。概述:该项目是通过改变不同抽样时钟频率,从时域和频域两方面分别观测抽样信号经fir滤波和iir滤波后的恢复失真情况,从而了解和探讨不同滤波器相频特性对抽样信号恢复的影响。1、观察被抽样信号经过fir低通滤波器与iir低通滤波器后,所恢复信号的频谱。(1)关电,按表格所示进行连线。源端口目标端口连线说明信号源:MUSIC模块3:TH1(被抽样信号)提供被抽样信号信号源:A-OUT模块3:TH2(抽样脉冲)提供抽样时钟模块3:TH3(抽样输出)模块3:TH13(编码输入)将信号送入数字滤波器(2)开电,设置主控菜单,选择【主菜单

11、】【通信原理】【抽样定理】。调节W1主控&信号源使信号A-OUT输出峰峰值为3V左右。(3)此时实验系统初始状态为:待抽样信号MUSIC为3K+1K正弦合成波,抽样时钟信号A-OUT为频率9KHz、占空比20%的方波。(4)实验操作及波形观测。a、观测信号经fir滤波后波形恢复效果:设置主控模块菜单,选择【抽样定理】【FIR滤波器】;设置【信号源】使A-OUT输出的抽样时钟频率为7.5KHz;用示波器观测恢复信号译码输出3#的波形和频谱。b、观测信号经iir滤波后波形恢复效果:设置主控模块菜单,选择【抽样定理】【IIR滤波器】;设置【信号源】使A-OUT输出的抽样时钟频率为7.5KHz;用示波

12、器观测恢复信号译码输出3#的波形和频谱。c、探讨被抽样信号经不同滤波器恢复的频谱和时域波形:被抽样信号与经过滤波器后恢复的信号之间的频谱是否一致?如果一致,是否就是说原始信号能够不失真的恢复出来?用示波器分别观测fir滤波恢复和iir滤波恢复情况下,译码输出3#的时域波形是否完全一致,如果波形不一致,是失真呢?还是有相位的平移呢?如果相位有平移,观测并计算相位移动时间。注:实际系统中,失真的现象不一定是错误的,实际系统中有这样的应用。2、观测相频特性(1)关电,按表格所示进行连线。源端口目标端口连线说明信号源:A-OUT模块3:TH13(编码输入)使源信号进入数字滤波器(2) 开电,设置主控菜

13、单,选择【主菜单】【通信原理】【抽样定理】【FIR滤波器】。(3) 此时系统初始实验状态为: A-OUT为频率9KHz、占空比20%的方波。(4)实验操作及波形观测。对比观测信号经fir滤波后的相频特性:设置【信号源】使A-OUT输出频率为5KHz、峰峰值为3V的正弦波;以100Hz步进减小A-OUT输出频率,用示波器对比观测A-OUT主控&信号源和译码输出3#的时域波形。相频特性测量就是改变信号的频率,测输出信号的延时(时域上观测)。记入如下表格:A-OUT的频率/Hz被抽样信号与恢复信号的相位延时/ms3.5K3.4K3.3K.五、实验报告1、分析电路的工作原理,叙述其工作过程。2、绘出所

14、做实验的电路、仪表连接调测图。并列出所测各点的波形、频率、电压等有关数据,对所测数据做简要分析说明。必要时借助于计算公式及推导3、分析以下问题:滤波器的幅频特性是如何影响抽样恢复信号的?简述平顶抽样和自然抽样的原理及实现方法。答:滤波器的截止频率等于源信号谱中最高频率fn的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出端可以得到恢复后的原新号。当抽样频率小于2倍的原新号的最高频率即滤波器的截止频率时,抽样信号的频谱会发生混叠现象,从发生混叠后的频谱中无法用低通滤波器获得信号频谱的全部内容,从而导致失真。平顶抽样原理:抽样脉冲具有一定持续时间,在脉宽期间其幅度不变,每个抽样脉冲顶部不随信号变化。实际应用中是采用抽样保持电路来实现的。自然抽样原理:抽样脉冲具有一定持续时间,在脉宽期间其幅度不变,每个抽样脉冲顶部随信号幅度变化。用周期性脉冲序列与信号相乘就可以实现。4、 思考一下,实验步骤中采用3K+1K正弦合成波作为被抽样信号,而不是单一频率的正弦波,在实验过程中波形变化的观测上有什么区别?对抽样定理理论和实际的研究有什么意义?答:观测波形变化时更稳定。使抽样定理理论的验证结果更可靠。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 教育教学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁