《平面向量数量积的物理背景及其含义.pptx》由会员分享,可在线阅读,更多相关《平面向量数量积的物理背景及其含义.pptx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、平面向量数量积的物理背景及其含义平面向量数量积的物理背景及其含义已知两个非零向量已知两个非零向量a和和b,作,作OA=a,OB=b,则,则AOB=(0 180)叫做向量叫做向量a与与b的的夹角夹角。OBA当0时,a与b同向;OAB当180时,a与b反向;OABB当90时,称a与b垂直,记为ab.OAab第1页/共18页 我们学过功的概念,即一个物体在力我们学过功的概念,即一个物体在力F的作用下产生位移的作用下产生位移s(如图)(如图)FS力力F所做的功所做的功W可用下式计算可用下式计算 W=|F|S|cos 其中其中是是F与与S的夹角的夹角 从力所做的功出发,我们引入向量从力所做的功出发,我们
2、引入向量“数量积数量积”的概念。的概念。第2页/共18页 已知两个非零向量已知两个非零向量a与与b,它们的,它们的夹角为夹角为,我们把数量,我们把数量|a|b|cos叫做叫做a与与b的的数量积数量积(或(或内积内积),记作),记作ab ab=|a|b|cos规定规定:零向量与任一向量的数量积为零向量与任一向量的数量积为0。|a|cos(|b|cos)叫)叫做向量做向量a在在b方向上(向方向上(向量量b在在a方向上)的方向上)的投影投影。注意:向量注意:向量的数量积是的数量积是一个数量。一个数量。第3页/共18页 向量的数量积是一个数量,那么它向量的数量积是一个数量,那么它什么时候为正,什么时候
3、为负?什么时候为正,什么时候为负?ab=|a|b|cos当当0 90时时ab为正;为正;当当90 180时时ab为负。为负。当当=90时时ab为零。为零。第4页/共18页设设是非零向量,是非零向量,方向相同的方向相同的单位向量,单位向量,的夹角,则的夹角,则特别地特别地OAB abB1第5页/共18页解:解:ab=|a|b|cos=54cos120 =54(-1/2)=10例例1 1 已知已知|a|=5|a|=5,|b|=4|b|=4,a a与与b b的夹角的夹角=120=120,求,求a ab b。例例2 已知已知a=(1,1),b=(2,0),求求ab。解:解:|a|=2,|b|=2,=4
4、5 ab=|a|b|cos=22cos45 =2第6页/共18页OAB|b|cos abB1等于等于的长度的长度与与的乘积。的乘积。第7页/共18页练习:练习:1 1若若a=0,则对任一向量,则对任一向量b ,有,有a b=02若若a 0,则对任一非零向量,则对任一非零向量b,有有a b03 3若若a 00,a b b=0,则,则b=04 4若若a b=0,则,则a b中至少有一个为中至少有一个为05 5若若a0,a b=b c,则,则a=c6 6若若a b=a c,则则bc,当且仅当当且仅当a=0 时成立时成立7对任意向量对任意向量 a 有有第8页/共18页二、二、平面向量的数量积的运算律平
5、面向量的数量积的运算律:数量积的运算律:数量积的运算律:其中,其中,是任意三个向量,是任意三个向量,注:注:第9页/共18页ONMa+bbac 向量a、b、a+b在c上的投影的数量分别是OM、MN、ON,证明运算律证明运算律(3)第10页/共18页例例 3:求证:求证:(1)(ab)2a22abb2;(2)(ab)(ab)a2b2.证明:证明:(1)(ab)2(ab)(ab)(ab)a(ab)baabaabbba22abb2.第11页/共18页例例 3:求证:求证:(1)(ab)2a22abb2;(2)(ab)(ab)a2b2.证明:证明:(2)(ab)(ab)(ab)a(ab)b aabaa
6、bbb a2b2.第12页/共18页例例4、的夹角为的夹角为解解:第13页/共18页第14页/共18页第15页/共18页3、用向量方法证明:直径所对的圆周、用向量方法证明:直径所对的圆周角为直角。角为直角。ABCO如图所示,已知如图所示,已知如图所示,已知如图所示,已知 OO,ABAB为直径,为直径,为直径,为直径,CC为为为为 OO上任意一点。求证上任意一点。求证上任意一点。求证上任意一点。求证ACB=90ACB=90分析:要证分析:要证ACB=90,只须证向,只须证向量量 ,即,即 。解:解:解:解:设设 则则 ,由此可得:由此可得:即即 ,ACB=90第16页/共18页作业:作业:P108 A组 1,2,3 步步高第17页/共18页