2021-2022学年广东省汕头市潮南区两英镇中考四模数学试题含解析.doc

上传人:知****量 文档编号:72429693 上传时间:2023-02-11 格式:DOC 页数:16 大小:759.54KB
返回 下载 相关 举报
2021-2022学年广东省汕头市潮南区两英镇中考四模数学试题含解析.doc_第1页
第1页 / 共16页
2021-2022学年广东省汕头市潮南区两英镇中考四模数学试题含解析.doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《2021-2022学年广东省汕头市潮南区两英镇中考四模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2021-2022学年广东省汕头市潮南区两英镇中考四模数学试题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2021-2022中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下面四个几何体: 其中,俯视图是四边形的几何体个数是()A1B2C3D42如图,直角边长为的等腰直角三角形与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为t,两图形重合部分的面积为S,则S关于t的图象大致为( )ABCD3下

2、列生态环保标志中,是中心对称图形的是()A B C D4如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A(,-1)B(2,1)C(1,-)D(1,)5用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于()A4B6C16D86如图,O与直线l1相离,圆心O到直线l1的距离OB2,OA4,将直线l1绕点A逆时针旋转30后得到的直线l2刚好与O相切于点C,则OC( )A1B2C3D47甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为千米/小时,依据题意列方程正确的是( )ABCD8点A(

3、2,5)关于原点对称的点的坐标是 ( )A(2,5) B(2,5) C(2,5) D(5,2)9如图是二次函数y =ax2+bx + c(a0)图象如图所示,则下列结论,c0,2a + b=0;a+b+c=0,b24ac0,其中正确的有( )A1个B2个C3个D410半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A3B4CD二、填空题(共7小题,每小题3分,满分21分)11如图,已知平行四边形ABCD,E是边BC的中点,联结DE并延长,与AB的延长线交于点F设=,=,那么向量用向量、表示为_12如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD

4、的长为_13如图,直线a,b被直线c所截,ab,1=2,若3=40,则4等于_14如图,直线mn,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若1=30,则2=_15如图是我区某一天内的气温变化图,结合该图给出的信息写出一个正确的结论:_16规定用符号表示一个实数的整数部分,例如:,按此规定,的值为_17已知:如图,ABC内接于O,且半径OCAB,点D在半径OB的延长线上,且A=BCD=30,AC=2,则由,线段CD和线段BD所围成图形的阴影部分的面积为_三、解答题(共7小题,满分69分)18(10分)如图,抛物线y=ax2+bx+c与x轴交于点A(1

5、,0),B(4,0),与y轴交于点C(0,2)(1)求抛物线的表达式;(2)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线的对称轴上是否存在点P,使BMP与ABD相似?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由19(5分)计算:(1-n)0-|3-2 |+(- )-1+4cos30.20(8分)计算:(1)22sin45+(2018)0+|21(10分)如图,AB、CD是O的直径,DF、BE是弦,且DFBE,求证:DB22(10分)为营造“安全出行”的良好交通氛围,实时监控道路交迸,某市交管部门在路口安装的高清摄像头如图所示,立杆MA与地面AB垂直,斜拉

6、杆CD与AM交于点C,横杆DEAB,摄像头EFDE于点E,AC=55米,CD=3米,EF=0.4米,CDE=162求MCD的度数;求摄像头下端点F到地面AB的距离(精确到百分位)23(12分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3)求此抛物线的表达式;如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求ABC的面积24(14分)如图,ABC中,CD是边AB上的高,且求证:ACDCBD;求ACB的大小参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】试题分析:根据俯视图是分别从物体上面看,所得到的俯视图是四边形的几何

7、体有正方体和三棱柱,故选B考点:简单几何体的三视图2、B【解析】先根据等腰直角三角形斜边为2,而等边三角形的边长为3,可得等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,进而得到S关于t的图象的中间部分为水平的线段,再根据当t=0时,S=0,即可得到正确图象【详解】根据题意可得,等腰直角三角形斜边为2,斜边上的高为1,而等边三角形的边长为3,高为,故等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,故两图形重合部分的面积先增大,然后不变,再减小,S关于t的图象的中间部分为水平的线段,故A,D选

8、项错误;当t0时,S0,故C选项错误,B选项正确;故选:B【点睛】本题考查了动点问题的函数图像,根据重复部分面积的变化是解题的关键3、B【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误故选B【考点】中心对称图形4、A【解析】作ADy轴于D,作CEy轴于E,则ADO=OEC=90,得出1+1=90,由正方形的性质得出OC=AO,1+3=90,证出3=1,由AAS证明OCEAOD,得到OE=AD=1,CE=OD=,即可得出结果【详解】解:作ADy轴于D,作CEy轴于E,如图所示:则ADO=

9、OEC=90,1+1=90AO=1,AD=1,OD=,点A的坐标为(1,),AD=1,OD=四边形OABC是正方形,AOC=90,OC=AO,1+3=90,3=1在OCE和AOD中,OCEAOD(AAS),OE=AD=1,CE=OD=,点C的坐标为(,1)故选A【点睛】本题考查了正方形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等得出对应边相等是解决问题的关键5、A【解析】由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8,底面半径=82【详解】解:由题意知:底面周长=8,底面半径=82=1故选A【点睛】此题主要考查了圆锥侧面展开扇形与底面圆之间的关系

10、,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长6、B【解析】先利用三角函数计算出OAB60,再根据旋转的性质得CAB30,根据切线的性质得OCAC,从而得到OAC30,然后根据含30度的直角三角形三边的关系可得到OC的长【详解】解:在RtABO中,sinOAB,OAB60,直线l1绕点A逆时针旋转30后得到的直线l1刚好与O相切于点C,CAB30,OCAC,OAC603030,在RtOAC中,OCOA1故选B【点睛】本题考查了直线与圆的位置关系:设O的半径为r,圆心O到直线l的距离为d,则直线l和O相交dr

11、;直线l和O相切dr;直线l和O相离dr也考查了旋转的性质7、C【解析】由实际问题抽象出方程(行程问题)【分析】甲车的速度为千米/小时,则乙甲车的速度为千米/小时甲车行驶30千米的时间为,乙车行驶40千米的时间为,根据甲车行驶30千米与乙车行驶40千米所用时间相同得故选C8、B【解析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)【详解】根据中心对称的性质,得点P(2,5)关于原点对称点的点的坐标是(2, 5).故选:B.【点睛】考查关于原点对称的点的坐标特征,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)9、B【解析】由抛物线的开口方向判断

12、a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】抛物线与y轴交于负半轴,则c1,故正确;对称轴x1,则2a+b=1故正确;由图可知:当x=1时,y=a+b+c1故错误;由图可知:抛物线与x轴有两个不同的交点,则b24ac1故错误综上所述:正确的结论有2个故选B【点睛】本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用10、C【解析】如图所示:过点O作ODAB于点D,OB=3,AB=4,ODAB,BD=AB=4=2,在RtBOD中,OD=故选C

13、二、填空题(共7小题,每小题3分,满分21分)11、+2【解析】根据平行四边形的判定与性质得到四边形DBFC是平行四边形,则DC=BF,故AF=2AB=2DC,结合三角形法则进行解答【详解】如图,连接BD,FC,四边形ABCD是平行四边形,DCAB,DC=ABDCEFBE又E是边BC的中点,EC=BE,即点E是DF的中点,四边形DBFC是平行四边形,DC=BF,故AF=2AB=2DC,=+=+2=+2故答案是:+2【点睛】此题考查了平面向量的知识、相似三角形的判定与性质以及平行四边形的性质注意掌握三角形法则的应用是关键12、 【解析】试题解析:四边形ABCD是矩形,OB=OD,OA=OC,AC

14、=BD,OA=OB,AE垂直平分OB,AB=AO,OA=AB=OB=3,BD=2OB=6,AD=【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键13、70【解析】试题分析:由平角的定义可知,1+2+3=180,又1=2,3=40,所以1=(180-40)2=70,因为b,所以4=1=70.故答案为70.考点:角的计算;平行线的性质.14、75【解析】试题解析:直线l1l2, 故答案为15、这一天的最高气温约是26【解析】根据我区某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案【详解】解:根

15、据图象可得这一天的最高气温约是26,故答案为:这一天的最高气温约是26【点睛】本题考查的是函数图象问题,统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键16、4【解析】根据规定,取的整数部分即可.【详解】,整数部分为4.【点睛】本题考查无理数的估值,熟记方法是关键.17、2【解析】试题分析:根据题意可得:O=2A=60,则OBC为等边三角形,根据BCD=30可得:OCD=90,OC=AC=2,则CD=,则三、解答题(共7小题,满分69分)18、 (1)y=x2+x+2;(2)满足条件的点P的坐标为(,)或(,)或(,5)或(,5)【解析】(1)利用待定系数法求抛物线的

16、表达式;(2)使BMP与ABD相似的有三种情况,分别求出这三个点的坐标.【详解】(1)抛物线与x轴交于点A(1,0),B(4,0),设抛物线的解析式为y=a(x+1)(x4),抛物线与y轴交于点C(0,2),a1(4)=2,a=,抛物线的解析式为y=(x+1)(x4)=x2+x+2;(2)如图1,连接CD,抛物线的解析式为y=x2+x+2,抛物线的对称轴为直线x=,M(,0),点D与点C关于点M对称,且C(0,2),D(3,2),MA=MB,MC=MD,四边形ACBD是平行四边形,A(1,0),B(4,0),C(3,22),AB2=25,BD2=(41)2+22=5,AD2=(3+1)2+22

17、=20,AD2+BD2=AB2,ABD是直角三角形,ADB=90,设点P(,m),MP=|m|,M(,0),B(4,0),BM=,BMP与ABD相似,当BMPADB时,m=,P(,)或(,),当BMPBDA时,m=5,P(,5)或(,5),即:满足条件的点P的坐标为P(,)或(,)或(,5)或(,5)【点睛】本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.19、1【解析】根据实数的混合计算,先把各数化简再进行合并.【详解】原式=1+3-2-3+2=1【点睛】此题主要考查实数的计算,解题的关键是将它们化成最简形式再进行计算.20、1【解析】原式第一项利用乘方法则计算,第二项利用特

18、殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简即可得到结果【详解】解:原式=11+1+=1+1+=1【点睛】此题考查了含有特殊角的三角函数值的运算,熟练掌握各运算法则是解题的关键.21、证明见解析【解析】根据在同圆中等弦对的弧相等,AB、CD是O的直径,则,由FD=EB,得,由等量减去等量仍是等量得:,即,由等弧对的圆周角相等,得D=B【详解】解:方法(一)证明:AB、CD是O的直径,FD=EB,即D=B方法(二)证明:如图,连接CF,AEAB、CD是O的直径,F=E=90(直径所对的圆周角是直角)AB=CD,DF=BE,RtDFCRtBEA(HL)D=B【

19、点睛】本题利用了在同圆中等弦对的弧相等,等弧对的弦,圆周角相等,等量减去等量仍是等量求解22、(1) (2)6.03米【解析】分析:延长ED,AM交于点P,由CDE=162及三角形外角的性质可得出结果;(2)利用解直角三角形求出PC,再利用PC+AC-EF即可得解.详解:(1)如图,延长ED,AM交于点P,DEAB, , 即MPD=90 CDE=162 (2)如图,在RtPCD中, CD=3米,PC = 米 AC=5.5米, EF=0.4米, 米 答:摄像头下端点F到地面AB的距离为6.03米. 点睛:本题考查了解直角三角形的应用,解决此类问题要了解角之间的关系,找到已知和未知相关联的的直角三

20、角形,当图形中没有直角三角形时,要通过作高线或垂线构造直角三角形.23、(1)y(x3)25(2)5【解析】(1)设顶点式y=a(x-3)2+5,然后把A点坐标代入求出a即可得到抛物线的解析式;(2)利用抛物线的对称性得到B(5,3),再确定出C点坐标,然后根据三角形面积公式求解【详解】(1)设此抛物线的表达式为ya(x3)25,将点A(1,3)的坐标代入上式,得3a(13)25,解得 此抛物线的表达式为 (2)A(1,3),抛物线的对称轴为直线x3,B(5,3)令x0,则 ABC的面积【点睛】考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.24、(1)证明见试题解析;(2)90【解析】试题分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明ACDCBD;(2)由(1)知ACDCBD,然后根据相似三角形的对应角相等可得:A=BCD,然后由A+ACD=90,可得:BCD+ACD=90,即ACB=90试题解析:(1)CD是边AB上的高,ADC=CDB=90,ACDCBD;(2)ACDCBD,A=BCD,在ACD中,ADC=90,A+ACD=90,BCD+ACD=90,即ACB=90 考点:相似三角形的判定与性质

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 生活常识

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁