《2021-2022学年山西省临汾平阳中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2021-2022学年山西省临汾平阳中考三模数学试题含解析.doc(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为( ) ABCD2如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,
2、再将ABE以BE为折痕向右折叠,AE与CD交于点F,则的值是()A1BCD3如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 ABCD的位置,旋转角为(090)若1112,则的大小是( )A68B20C28D224计算(18)9的值是( )A-9B-27C-2D253的相反数是( )ABCD6设点和是反比例函数图象上的两个点,当时,则一次函数的图象不经过的象限是A第一象限B第二象限C第三象限D第四象限7关于2、6、1、10、6的这组数据,下列说法正确的是( )A这组数据的众数是6B这组数据的中位数是1C这组数据的平均数是6D这组数据的方差是108如图,3个形状大小完全相同的菱形组成网格,菱形
3、的顶点称为格点已知菱形的一个角为60,A、B、C都在格点上,点D在过A、B、C三点的圆弧上,若也在格点上,且AED=ACD,则AEC 度数为 ( ) A75B60C45D309已知二次函数y=(x+a)(xa1),点P(x0,m),点Q(1,n)都在该函数图象上,若mn,则x0的取值范围是()A0x01B0x01且x0Cx00或x01D0x0110如果ab=5,那么代数式(2)的值是()ABC5D511若关于x的不等式组无解,则a的取值范围是()Aa3Ba3Ca3Da312等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是( )A9 cm B12 cm C9 cm或12 cm D14
4、 cm二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,以锐角ABC的边AB为直径作O,分别交AC,BC于E、D两点,若AC14,CD4,7sinC3tanB,则BD_14大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(APPB),如果AB的长度为10cm,那么PB的长度为_cm15一个圆的半径为2,弦长是2,求这条弦所对的圆周角是_16某篮球架的侧面示意图如图所示,现测得如下数据:底部支架AB的长为1.74m,后拉杆AE的倾斜角EAB=53,篮板MN到立柱BC的水平距离BH=1.74m,在篮板MN另一侧,与篮球架横伸臂DG等高度处安装
5、篮筐,已知篮筐到地面的距离GH的标准高度为3.05m则篮球架横伸臂DG的长约为_m(结果保留一位小数,参考数据:sin53, cos53,tan53)17已知x=2是关于x的一元二次方程kx2+(k22)x+2k+4=0的一个根,则k的值为_18如图,已知正方形ABCD中,MAN=45,连接BD与AM,AN分别交于E,F点,则下列结论正确的有_MN=BM+DNCMN的周长等于正方形ABCD的边长的两倍;EF1=BE1+DF1;点A到MN的距离等于正方形的边长AEN、AFM都为等腰直角三角形SAMN=1SAEFS正方形ABCD:SAMN=1AB:MN设AB=a,MN=b,则11三、解答题:(本大
6、题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,求购买A型和B型公交车每辆各需多少万元?预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?20(6分
7、)如图,抛物线y=x11x3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为1(1)求A,B两点的坐标及直线AC的函数表达式;(1)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求ACE面积的最大值;(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由(4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果
8、存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由21(6分)如图,O直径AB和弦CD相交于点E,AE2,EB6,DEB30,求弦CD长22(8分)已知抛物线y=x26x+9与直线y=x+3交于A,B两点(点A在点B的左侧),抛物线的顶点为C,直线y=x+3与x轴交于点D(1)求抛物线的顶点C的坐标及A,B两点的坐标;(2)将抛物线y=x26x+9向上平移1个单位长度,再向左平移t(t0)个单位长度得到新抛物线,若新抛物线的顶点E在DAC内,求t的取值范围;(3)点P(m,n)(3m1)是抛物线y=x26x+9上一点,当PAB的面积是ABC面积的2倍时,求m,n的值23(8分)如图
9、,已知等腰三角形ABC的底角为30,以BC为直径的O与底边AB交于点D,过点D作DEAC,垂足为E(1)证明:DE为O的切线;(2)连接DC,若BC4,求弧DC与弦DC所围成的图形的面积24(10分)问题探究(1)如图,点E、F分别在正方形ABCD的边BC、CD上,EAF=45,则线段BE、EF、FD之间的数量关系为 ;(2)如图,在ADC中,AD=2,CD=4,ADC是一个不固定的角,以AC为边向ADC的另一侧作等边ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图,在四边形ABCD中,AB=AD,BAD=60,BC=4,若BDCD,
10、垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由25(10分)在传箴言活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行统计,并绘制成了如图所示的两幅统计图(1)将条形统计图补充完整;(2)该班团员在这一个月内所发箴言的平均条数是_;(3)如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,现要从发了3条箴言和4条箴言的同学中分别选出一位参加总结会,请你用列表或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率26(12分)如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45,在
11、楼顶C测得塔顶A的仰角3652已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE(参考数据:sin36520.60,tan36520.75)27(12分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E求证:AFECDF;若AB=4,BC=8,求图中阴影部分的面积参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据二次函数图象开口向上得到a0,再根据对称轴确定出b,根据二次函数图形与轴的交点个数,判断的符号,根据图象发现当x=1时y=a+b+c0,对称轴为直线 b0,当x=1时
12、y=a+b+c0,的图象经过第二四象限,且与y轴的正半轴相交,反比例函数图象在第二、四象限,只有D选项图象符合.故选:D.【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.2、C【解析】由题意知:AB=BE=6,BD=ADAB=2(图2中),AD=ABBD=4(图3中);CEAB,ECFADF,得,即DF=2CF,所以CF:CD=1:3,故选C【点睛】本题考查了矩形的性质,折叠问题,相似三角形的判定与性质等,准确识图是解题的关键.3、D【解析】试题解析:四边形ABCD为矩形,BAD=ABC=ADC=90,矩形ABCD绕点A顺时针旋转到矩形ABC
13、D的位置,旋转角为,BAB=,BAD=BAD=90,D=D=90,2=1=112,而ABD=D=90,3=180-2=68,BAB=90-68=22,即=22故选D4、C【解析】直接利用有理数的除法运算法则计算得出答案【详解】解:(-18)9=-1故选:C【点睛】此题主要考查了有理数的除法运算,正确掌握运算法则是解题关键5、D【解析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1【详解】根据相反数的定义可得:3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.6、A【解析】点和是反比例函数图象上的两个点,当1时,即y随
14、x增大而增大,根据反比例函数图象与系数的关系:当时函数图象的每一支上,y随x的增大而减小;当时,函数图象的每一支上,y随x的增大而增大故k1根据一次函数图象与系数的关系:一次函数的图象有四种情况:当,时,函数的图象经过第一、二、三象限;当,时,函数的图象经过第一、三、四象限;当,时,函数的图象经过第一、二、四象限;当,时,函数的图象经过第二、三、四象限因此,一次函数的,故它的图象经过第二、三、四象限,不经过第一象限故选A7、A【解析】根据方差、算术平均数、中位数、众数的概念进行分析.【详解】数据由小到大排列为1,2,6,6,10,它的平均数为(1+2+6+6+10)=5,数据的中位数为6,众数
15、为6,数据的方差= (15)2+(25)2+(65)2+(65)2+(105)2=10.1故选A考点:方差;算术平均数;中位数;众数8、B【解析】将圆补充完整,利用圆周角定理找出点E的位置,再根据菱形的性质即可得出CME为等边三角形,进而即可得出AEC的值【详解】将圆补充完整,找出点E的位置,如图所示弧AD所对的圆周角为ACD、AEC,图中所标点E符合题意四边形CMEN为菱形,且CME=60,CME为等边三角形,AEC=60故选B.【点睛】本题考查了菱形的性质、等边三角形的判定依据圆周角定理,根据圆周角定理结合图形找出点E的位置是解题的关键9、D【解析】分析:先求出二次函数的对称轴,然后再分两
16、种情况讨论,即可解答详解:二次函数y=(x+a)(xa1),当y=0时,x1=a,x2=a+1,对称轴为:x= 当P在对称轴的左侧(含顶点)时,y随x的增大而减小,由mn,得:0x0; 当P在对称轴的右侧时,y随x的增大而增大,由mn,得:x01 综上所述:mn,所求x0的取值范围0x01 故选D点睛:本题考查了二次函数图象上点的坐标特征,解决本题的关键是利用二次函数的性质,要分类讨论,以防遗漏10、D【解析】【分析】先对括号内的进行通分,进行分式的加减法运算,然后再进行分式的乘除法运算,最后把a-b=5整体代入进行求解即可.【详解】(2)=a-b,当a-b=5时,原式=5,故选D.11、A【
17、解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可【详解】不等式组无解,a43a+2,解得:a3,故选A【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.12、B【解析】当腰长是2 cm时,因为2+22,符合三角形三边关系,此时周长是12 cm故选B二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】如图,连接AD,根据圆周角定理可得ADBC在RtADC中,sinC= ;在RtABD中,tanB=已知7sinC=3tanB,所以7=3,又因AC14,即可求
18、得BD=1 点睛:此题主要考查的是圆周角定理和锐角三角函数的定义,以公共边AD为桥梁,利用锐角三角函数的定义得到tanB和sinC的式子是解决问题的关键14、(155)【解析】先利用黄金分割的定义计算出AP,然后计算AB-AP即得到PB的长【详解】P为AB的黄金分割点(APPB),AP=AB=10=55,PB=ABPA=10(55)=(155)cm故答案为(155)【点睛】本题考查了黄金分割:把线段AB分成两条线段AC和BC(ACBC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点其中AC=AB15、60或120【解析】首先根
19、据题意画出图形,过点O作ODAB于点D, 通过垂径定理, 即可推出AOD的度数, 求得AOB的度数, 然后根据圆周角定理,即可推出AMB和ANB的度数.【详解】解:如图:连接OA,过点O作ODAB 于点D,OA=2,AB=,AD=BD=,AD:OA=:2,AOD=, AOB=,AMB=,ANB=.故答案为: 或.【点睛】本题主要考查垂径定理与圆周角定理,注意弦所对的圆周角有两个,他们互为补角.16、1.1【解析】过点D作DOAH于点O,先证明ABCAOD得出=,再根据已知条件求出AO,则OH=AH-AO=DG.【详解】解:过点D作DOAH于点O,如图:由题意得CBDO,ABCAOD,=,CAB
20、=53,tan53=,tanCAB=,AB=1.74m,CB=1.31m,四边形DGHO为长方形,DO=GH=3.05m,OH=DG,=,则AO=1.1875m,BH=AB=1.75m,AH=3.5m,则OH=AH-AO1.1m,DG1.1m.故答案为1.1.【点睛】本题考查了相似三角形的性质与应用,解题的关键是熟练的掌握相似三角形的性质与应用.17、1【解析】【分析】把x=2代入kx2+(k22)x+2k+4=0得4k+2k24+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可【详解】把x=2代入kx2+(k22)x+2k+4=0得4k+2k24+2k+4=0,整理得
21、k2+1k=0,解得k1=0,k2=1,因为k0,所以k的值为1故答案为:1【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解18、【解析】将ABM绕点A逆时针旋转,使AB与AD重合,得到ADH证明MANHAN,得到MN=NH,根据三角形周长公式计算判断;判断出BM=DN时,MN最小,即可判断出;根据全等三角形的性质判断;将ADF绕点A顺时针性质90得到ABH,连接HE证明EAHEAF,得到HBE=90,根据勾股定理计算判断;根据等腰直角三角形的判定定理判断;根据等腰直角三角形的性质、三角形的面积公式计算,判断,根据点A到MN的
22、距离等于正方形ABCD的边长、三角形的面积公式计算,判断【详解】将ABM绕点A逆时针旋转,使AB与AD重合,得到ADH则DAH=BAM,四边形ABCD是正方形,BAD=90,MAN=45,BAN+DAN=45,NAH=45,在MAN和HAN中,MANHAN,MN=NH=BM+DN,正确;BM+DN1,(当且仅当BM=DN时,取等号)BM=DN时,MN最小,BM=b,DH=BM=b,DH=DN,ADHN,DAH=HAN=11.5,在DA上取一点G,使DG=DH=b,DGH=45,HG=DH=b,DGH=45,DAH=11.5,AHG=HAD,AG=HG=b,AB=AD=AG+DG=b+b=b=a
23、,当点M和点B重合时,点N和点C重合,此时,MN最大=AB,即:,1,错误;MN=NH=BM+DNCMN的周长=CM+CN+MN=CM+BM+CN+DN=CB+CD,CMN的周长等于正方形ABCD的边长的两倍,结论正确;MANHAN,点A到MN的距离等于正方形ABCD的边长AD,结论正确; 如图1,将ADF绕点A顺时针性质90得到ABH,连接HEDAF+BAE=90-EAF=45,DAF=BAE,EAH=EAF=45,EA=EA,AH=AD,EAHEAF,EF=HE,ABH=ADF=45=ABD,HBE=90,在RtBHE中,HE1=BH1+BE1,BH=DF,EF=HE,EF1=BE1+DF
24、1,结论正确;四边形ABCD是正方形,ADC=90,BDC=ADB=45,MAN=45,EAN=EDN,A、E、N、D四点共圆,ADN+AEN=180,AEN=90AEN是等腰直角三角形,同理AFM是等腰直角三角形;结论正确;AEN是等腰直角三角形,同理AFM是等腰直角三角形,AM=AF,AN=AE,如图3,过点M作MPAN于P,在RtAPM中,MAN=45,MP=AMsin45,SAMN=ANMP=AMANsin45,SAEF=AEAFsin45,SAMN:SAEF=1,SAMN=1SAEF,正确;点A到MN的距离等于正方形ABCD的边长,S正方形ABCD:SAMN=1AB:MN,结论正确即
25、:正确的有,故答案为【点睛】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,解本题的关键是构造全等三角形三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元(2)购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元【解析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a
26、辆,则B型公交车(10-a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可【详解】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元(2)设购买A型公交车a辆,则B型公交车(10a)辆,由题意得,解得:,因为a是整数,所以a6,7,8;则(10a)4,3,2;三种方案:购买A型公交车6辆,则B型公交车4辆:1006+15041200万元;购买A型公交车7辆,则B型公交车3辆:1007+15031150万元
27、;购买A型公交车8辆,则B型公交车2辆:1008+15021100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题20、(1)y=x1;(1)ACE的面积最大值为;(3)M(1,1),N(,0);(4)满足条件的F点坐标为F1(1,0),F1(3,0),F3(4+,0),F4(4,0)【解析】(1)令抛物线y=x1-1x-3=0,求出x的值,即可求A,B两点的坐标,根据两点式求出直线AC的函数表达式;(1)设P点的横坐标为x(-1x1),求出P、
28、E的坐标,用x表示出线段PE的长,求出PE的最大值,进而求出ACE的面积最大值;(3)根据D点关于PE的对称点为点C(1,-3),点Q(0,-1)点关于x轴的对称点为M(0,1),则四边形DMNQ的周长最小,求出直线CM的解析式为y=-1x+1,进而求出最小值和点M,N的坐标;(4)结合图形,分两类进行讨论,CF平行x轴,如图1,此时可以求出F点两个坐标;CF不平行x轴,如题中的图1,此时可以求出F点的两个坐标【详解】解:(1)令y=0,解得或x1=3,A(1,0),B(3,0);将C点的横坐标x=1代入y=x11x3得 C(1,-3),直线AC的函数解析式是 (1)设P点的横坐标为x(1x1
29、),则P、E的坐标分别为:P(x,x1),E(x,x11x3),P点在E点的上方, 当时,PE的最大值ACE的面积最大值 (3)D点关于PE的对称点为点C(1,3),点Q(0,1)点关于x轴的对称点为K(0,1),连接CK交直线PE于M点,交x轴于N点,可求直线CK的解析式为,此时四边形DMNQ的周长最小,最小值求得M(1,1),(4)存在如图1,若AFCH,此时的D和H点重合,CD=1,则AF=1,于是可得F1(1,0),F1(3,0),如图1,根据点A和F的坐标中点和点C和点H的坐标中点相同,再根据|HA|=|CF|,求出 综上所述,满足条件的F点坐标为F1(1,0),F1(3,0),【点
30、睛】属于二次函数综合题,考查二次函数与轴的交点坐标,待定系数法求一次函数解析式,二次函数的最值以及平行四边形的性质等,综合性比较强,难度较大.21、【解析】试题分析:过O作OF垂直于CD,连接OD,利用垂径定理得到F为CD的中点,由AE+EB求出直径AB的长,进而确定出半径OA与OD的长,由OAAE求出OE的长,在直角三角形OEF中,利用30所对的直角边等于斜边的一半求出OF的长,在直角三角形ODF中,利用勾股定理求出DF的长,由CD=2DF即可求出CD的长试题解析:过O作OFCD,交CD于点F,连接OD,F为CD的中点,即CF=DF,AE=2,EB=6,AB=AE+EB=2+6=8,OA=4
31、,OE=OAAE=42=2,在RtOEF中,DEB=30,OF=OE=1,在RtODF中,OF=1,OD=4,根据勾股定理得:DF=,则CD=2DF=2考点:垂径定理;勾股定理22、(1)C(2,0),A(1,4),B(1,9);(2)t5;(2)m=,n=.【解析】分析:()将抛物线的一般式配方为顶点式即可求出点C的坐标,联立抛物线与直线的解析式即可求出A、B的坐标 ()由题意可知:新抛物线的顶点坐标为(2t,1),然后求出直线AC的解析式后,将点E的坐标分别代入直线AC与AD的解析式中即可求出t的值,从而可知新抛物线的顶点E在DAC内,求t的取值范围 ()直线AB与y轴交于点F,连接CF,
32、过点P作PMAB于点M,PNx轴于点N,交DB于点G,由直线y=x+2与x轴交于点D,与y轴交于点F,得D(2,0),F(0,2),易得CFAB,PAB的面积是ABC面积的2倍,所以ABPM=ABCF,PM=2CF=1,从而可求出PG=3,利用点G在直线y=x+2上,P(m,n),所以G(m,m+2),所以PG=n(m+2),所以n=m+4,由于P(m,n)在抛物线y=x21x+9上,联立方程从而可求出m、n的值详解:(I)y=x21x+9=(x2)2,顶点坐标为(2,0) 联立, 解得:或; (II)由题意可知:新抛物线的顶点坐标为(2t,1),设直线AC的解析式为y=kx+b 将A(1,4
33、),C(2,0)代入y=kx+b中, 解得:, 直线AC的解析式为y=2x+1 当点E在直线AC上时,2(2t)+1=1,解得:t= 当点E在直线AD上时,(2t)+2=1,解得:t=5,当点E在DAC内时,t5; (III)如图,直线AB与y轴交于点F,连接CF,过点P作PMAB于点M,PNx轴于点N,交DB于点G由直线y=x+2与x轴交于点D,与y轴交于点F,得D(2,0),F(0,2),OD=OF=2 FOD=90,OFD=ODF=45 OC=OF=2,FOC=90,CF=2,OFC=OCF=45, DFC=DFO+OFC=45+45=90,CFAB PAB的面积是ABC面积的2倍,AB
34、PM=ABCF, PM=2CF=1 PNx轴,FDO=45,DGN=45,PGM=45在RtPGM中,sinPGM=, PG=3 点G在直线y=x+2上,P(m,n), G(m,m+2) 2m1,点P在点G的上方,PG=n(m+2),n=m+4 P(m,n)在抛物线y=x21x+9上,m21m+9=n,m21m+9=m+4,解得:m= 2m1,m=不合题意,舍去,m=,n=m+4= 点睛:本题是二次函数综合题,涉及待定系数法,解方程,勾股定理,三角形的面积公式,综合程度较高,需要学生综合运用所学知识23、(1)详见解析;(2).【解析】(1)连接OD,由平行线的判定定理可得ODAC,利用平行线
35、的性质得ODE=DEA=90,可得DE为O的切线;(2)连接CD,求弧DC与弦DC所围成的图形的面积利用扇形DOC面积-三角形DOC的面积计算即可【详解】解:(1)证明:连接OD,ODOB,ODBB,ACBC,AB,ODBA,ODAC,ODEDEA90,DE为O的切线;(2)连接CD,A30,ACBC,BCA120,BC为直径,ADC90,CDAB,BCD60,ODOC,DOC60,DOC是等边三角形,BC4,OCDC2,SDOCDC,弧DC与弦DC所围成的图形的面积【点睛】本题考查的知识点是等腰三角形的性质、切线的判定与性质以及扇形面积的计算,解题的关键是熟练的掌握等腰三角形的性质、切线的判
36、定与性质以及扇形面积的计算.24、 (1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为2+2【解析】(1)作辅助线,首先证明ABEADG,再证明AEFAEG,进而得到EF=FG问题即可解决;(2)将ABD绕着点B顺时针旋转60,得到BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,DBE=60,可得DE=BD,根据DEDC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;(3)以BC为边作等边三角形BCE,过点E作EFBC于点F,连接DE,由旋转的性质得DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EFBC,可求出BF,EF,以
37、BC为直径作F,则点D在F上,连接DF,可求出DF,则AC=DEDF+EF,代入数值即可解决问题.【详解】(1)如图,延长CD至G,使得DG=BE,正方形ABCD中,AB=AD,B=AFG=90,ABEADG,AE=AG,BAE=DAG,EAF=45,BAD=90,BAE+DAF=45,DAG+DAF=45,即GAF=EAF,又AF=AF,AEFAEG,EF=GF=DG+DF=BE+DF,故答案为:BE+DF=EF;(2)存在在等边三角形ABC中,AB=BC,ABC=60,如图,将ABD绕着点B顺时针旋转60,得到BCE,连接DE由旋转可得,CE=AD=2,BD=BE,DBE=60,DBE是等
38、边三角形,DE=BD,在DCE中,DEDC+CE=4+2=6,当D、C、E三点共线时,DE存在最大值,且最大值为6,BD的最大值为6;(3)存在如图,以BC为边作等边三角形BCE,过点E作EFBC于点F,连接DE,AB=BD,ABC=DBE,BC=BE,ABCDBE,DE=AC,在等边三角形BCE中,EFBC,BF=BC=2,EF=BF=2=2,以BC为直径作F,则点D在F上,连接DF,DF=BC=4=2,AC=DEDF+EF=2+2,即AC的最大值为2+2【点睛】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.25、(1)作图见解析
39、;(2)3;(3)【解析】(1)根据发了3条箴言的人数与所占的百分比列式计算即可求出该班全体团员的总人数为12,再求出发了4条箴言的人数,然后补全统计图即可;(2)利用该班团员在这一个月内所发箴言的总条数除以总人数即可求得结果;(3)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可【详解】解:(1)该班团员人数为:325%=12(人),发了4条赠言的人数为:122231=4(人),将条形统计图补充完整如下: (2)该班团员所发赠言的平均条数为:(21+22+33+44+15)12=3,故答案为:3;(3)发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,发了3
40、条箴言的同学中有一位女同学,发了4条箴言的同学中有一位男同学,方法一:列表得:共有12种结果,且每种结果的可能性相同,所选两位同学中恰好是一位男同学和一位女同学的情况有7种,所选两位同学中恰好是一位男同学和一位女同学的概率为:;方法二:画树状图如下:共有12种结果,且每种结果的可能性相同,所选两位同学中恰好是一位男同学和一位女同学的情况有7种,所选两位同学中恰好是一位男同学和一位女同学的概率为:;【点睛】此题考查了树状图法与列表法求概率,以及条形统计图与扇形统计图的知识注意平均条数=总条数总人数;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率26、5
41、2【解析】根据楼高和山高可求出EF,继而得出AF,在RtAFC中表示出CF,在RtABD中表示出BD,根据CF=BD可建立方程,解出即可【详解】如图,过点C作CFAB于点F. 设塔高AE=x,由题意得,EF=BECD=5627=29m,AF=AE+EF=(x+29)m,在RtAFC中,ACF=3652,AF=(x+29)m,则,在RtABD中,ADB=45,AB=x+56,则BD=AB=x+56,CF=BD,解得:x=52,答:该铁塔的高AE为52米.【点睛】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,注意利用方程思想求解,难度一般.27、(1)证明见解析;(2)1【解析】试题分析:(1)根据矩形的性质得到AB=CD,B=D=90,根据折叠的性质得到E=B,AB=AE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论试题解析:(1)四边形ABCD是矩形,AB=CD,B=D=90,将矩形A