《2021-2022学年甘肃省白银市靖远七中学中考数学模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2021-2022学年甘肃省白银市靖远七中学中考数学模试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2021-2022中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是()A千里江山图B京津冀协同发展C内蒙古自治区成立七十周年D河北雄安新区建立纪念2下列立体图形中,主视图是三角形的是( )ABCD3如图,一艘海轮位于灯
2、塔P的南偏东70方向的M处, 它以每小时40海里的速度向正北方向航行,2小时后到 达位于灯塔P的北偏东40的N处,则N处与灯塔P的 距离为A40海里B60海里C70海里D80海里4如图图形中,既是中心对称图形又是轴对称图形的是()ABCD5在下列条件中,能够判定一个四边形是平行四边形的是( )A一组对边平行,另一组对边相等B一组对边相等,一组对角相等C一组对边平行,一条对角线平分另一条对角线D一组对边相等,一条对角线平分另一条对角线6观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有()个A6055B6056C6057D60587如图,ABC为钝角三角形,将
3、ABC绕点A按逆时针方向旋转120得到ABC,连接BB,若ACBB,则CAB的度数为()A45B60C70D908下列运算结果正确的是()Ax2+2x23x4B(2x2)38x6Cx2(x3)x5D2x2x2x9如果实数a=,且a在数轴上对应点的位置如图所示,其中正确的是()ABCD10如图,已知反比函数的图象过RtABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若ABO的周长为,AD=2,则ACO的面积为( )AB1C2D411实数的倒数是( )ABCD12在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是,设金色纸边的宽为,那么
4、满足的方程是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13若分式方程的解为正数,则a的取值范围是_14化简的结果为_15如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点若四边形EFGH为菱形,则对角线AC、BD应满足条件_16计算:-=_.17某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是_18化简:=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤1
5、9(6分)计算:|2|+(2017)04cos4520(6分)先化简,再求值:,其中满足21(6分)如图,梯形ABCD中,ADBC,AEBC于E,ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F(1)求证:CD与O相切;(2)若BF=24,OE=5,求tanABC的值22(8分)如图,在方格纸上建立平面直角坐标系,每个小正方形的边长为1(1)在图1中画出AOB关于x轴对称的A1OB1,并写出点A1,B1的坐标;(2)在图2中画出将AOB绕点O顺时针旋转90的A2OB2,并求出线段OB扫过的面积23(8分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个
6、小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上24(10分)如图,AB是O的直径,点C是AB延长线上的点,CD与O相切于点D,连结BD、AD求证;BDCA若C45,O的半径为1,直接写出AC的长25(10分)如图,AB为O的直径,C是O上一点,过点C的直线交AB的延长线于点D,AEDC,垂足为E,F是AE与O的交点,AC平分BAE求证:DE是O的切
7、线;若AE=6,D=30,求图中阴影部分的面积26(12分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,把手AM的仰角=37,此时把手端点A、出水口B和点落水点C在同一直线上,洗手盆及水龙头的相关数据如图2.(参考数据:sin37=,cos37=,tan37=)(1)求把手端点A到BD的距离;(2)求CH的长.27(12分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12方向,B在地面C的北偏东57方向已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度(结果精确到0.1米,参考数据:sin330.54,cos330.8
8、4,tan330.65)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据中心对称图形的概念求解【详解】解:A选项是轴对称图形,不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确;D选项不是中心对称图形,故本选项错误故选C【点睛】本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合2、A【解析】考查简单几何体的三视图根据从正面看得到的图形是主视图,可得图形的主视图【详解】A、圆锥的主视图是三角形,符合题意;B、球的主视图是圆,
9、不符合题意;C、圆柱的主视图是矩形,不符合题意;D、正方体的主视图是正方形,不符合题意故选A【点睛】主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看3、D【解析】分析:依题意,知MN40海里/小时2小时80海里,根据方向角的意义和平行的性质,M70,N40,根据三角形内角和定理得MPN70MMPN70NPNM80海里故选D4、A【解析】A. 是轴对称图形,是中心对称图形,故本选项正确;B. 是中心对称图,不是轴对称图形,故本选项错误;C. 不是中心对称图,是轴对称图形,故本选项错误;D. 不是轴对称图形,是中心对称图形,故本选项错误。故选A.5、C【解析】A、错误这个四边形有可能是等
10、腰梯形B、错误不满足三角形全等的条件,无法证明相等的一组对边平行C、正确可以利用三角形全等证明平行的一组对边相等故是平行四边形D、错误不满足三角形全等的条件,无法证明相等的一组对边平行故选C6、D【解析】设第n个图形有a个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出a =1+3n(n为正整数),再代入a=2019即可得出结论【详解】设第n个图形有an个(n为正整数),观察图形,可知:a11+31,a21+32,a31+33,a41+34,an1+3n(n为正整数),a20191+320191故选:D【点睛】此题考查规律型:图形的变化,解题关键在于找到规律7、D【解析】已知ABC
11、绕点A按逆时针方向旋转l20得到ABC,根据旋转的性质可得BAB=CAC=120,AB=AB,根据等腰三角形的性质和三角形的内角和定理可得ABB=(180-120)=30,再由ACBB,可得CAB=ABB=30,所以CAB=CAC-CAB=120-30=90故选D8、C【解析】直接利用整式的除法运算以及积的乘方运算法则、合并同类项法则分别化简得出答案【详解】A选项:x2+2x2=3x2,故此选项错误;B选项:(2x2)3=8x6,故此选项错误;C选项:x2(x3)=x5,故此选项正确;D选项:2x2x2=2,故此选项错误故选C【点睛】考查了整式的除法运算以及积的乘方运算、合并同类项,正确掌握运
12、算法则是解题关键9、C【解析】分析:估计的大小,进而在数轴上找到相应的位置,即可得到答案.详解:由被开方数越大算术平方根越大,即故选C.点睛:考查了实数与数轴的的对应关系,以及估算无理数的大小,解决本题的关键是估计的大小.10、A【解析】在直角三角形AOB中,由斜边上的中线等于斜边的一半,求出OB的长,根据周长求出直角边之和,设其中一直角边AB=x,表示出OA,利用勾股定理求出AB与OA的长,过D作DE垂直于x轴,得到E为OA中点,求出OE的长,在直角三角形DOE中,利用勾股定理求出DE的长,利用反比例函数k的几何意义求出k的值,确定出三角形AOC面积即可【详解】在RtAOB中,AD=2,AD
13、为斜边OB的中线,OB=2AD=4,由周长为4+2,得到AB+AO=2,设AB=x,则AO=2-x,根据勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,整理得:x2-2x+4=0,解得x1=+,x2=-,AB=+,OA=-,过D作DEx轴,交x轴于点E,可得E为AO中点,OE=OA=(-)(假设OA=+,与OA=-,求出结果相同),在RtDEO中,利用勾股定理得:DE=(+)),k=-DEOE=-(+))(-))=1.SAOC=DEOE=,故选A【点睛】本题属于反比例函数综合题,涉及的知识有:勾股定理,直角三角形斜边的中线性质,三角形面积求法,以及反比例函数k的几何意义,熟练掌
14、握反比例的图象与性质是解本题关键11、D【解析】因为,所以的倒数是.故选D.12、B【解析】根据矩形的面积=长宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.【详解】由题意,设金色纸边的宽为,得出方程:(80+2x)(50+2x)=5400,整理后得:故选:B.【点睛】本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、a8,且a1【解析】分式方程去分母得:x=2x-8+a,解得:x=8-
15、a,根据题意得:8- a2,8- a1,解得:a8,且a1故答案为:a8,且a1【点睛】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据分式方程解为正数求出a的范围即可此题考查了分式方程的解,需注意在任何时候都要考虑分母不为214、+1【解析】利用积的乘方得到原式(1)(+1)2017(+1),然后利用平方差公式计算【详解】原式(1)(+1)2017(+1)(21)2017(+1)+1故答案为:+1【点睛】本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍15、AC=BD【解析】试题分析:添加的条件应
16、为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形试题解析:添加的条件应为:AC=BD证明:E,F,G,H分别是边AB、BC、CD、DA的中点,在ADC中,HG为ADC的中位线,所以HGAC且HG=AC;同理EFAC且EF=AC,同理可得EH=BD,则HGEF且HG=EF,四边形EFGH为平行四边形,又AC=BD,所以EF=EH,四
17、边形EFGH为菱形考点:1菱形的性质;2三角形中位线定理16、2【解析】试题解析:原式 故答案为17、乙【解析】据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,即可得出答案【详解】解:S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,S乙2S丁2S甲2S丙2,二月份白菜价格最稳定的市场是乙;故答案为:乙【点睛】本题考查方差的意义解题关键是掌握方差的意义:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较
18、集中,各数据偏离平均数越小,即波动越小,数据越稳定18、m【解析】解:原式=m故答案为m三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、1.【解析】直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案【详解】解:原式=2+2+14=2+2+12=1【点睛】此题主要考查了实数运算,正确化简各数是解题关键20、,1【解析】原式括号中的两项通分并利用同分母分式的加法法则计算,再与括号外的分式通分后利用同分母分式的加法法则计算,约分得到最简结果,将变形为,整体代入计算即可【详解】解:原式,原式【点睛】本题主要考查分式的化简求值,解题的关键是掌
19、握分式的混合运算顺序和运算法则21、(1)证明见解析;(2)【解析】试题分析:(1)过点O作OGDC,垂足为G先证明OAD=90,从而得到OAD=OGD=90,然后利用AAS可证明ADOGDO,则OA=OG=r,则DC是O的切线;(2)连接OF,依据垂径定理可知BE=EF=1,在RtOEF中,依据勾股定理可知求得OF=13,然后可得到AE的长,最后在RtABE中,利用锐角三角函数的定义求解即可试题解析:(1)证明:过点O作OGDC,垂足为GADBC,AEBC于E,OAADOAD=OGD=90在ADO和GDO中,ADOGDOOA=OGDC是O的切线(2)如图所示:连接OFOABC,BE=EF=
20、BF=1在RtOEF中,OE=5,EF=1,OF=,AE=OA+OE=13+5=2tanABC.【点睛】本题主要考查的是切线的判定、垂径定理、勾股定理的应用、锐角三角函数的定义,掌握本题的辅助线的作法是解题的关键22、(1)A1(1,2),B1(2,1);(2)【解析】(1)根据轴对称性质解答点关于x轴对称横坐标不变,纵坐标互为相反数;(2)根据旋转变换的性质、扇形面积公式计算【详解】(1)如图所示:A1(1,2),B1(2,1);(2)将AOB绕点O顺时针旋转90的A2OB2如图所示: 线段OB扫过的面积为:【点睛】此题主要考查了图形的旋转以及位似变换和轴对称变换等知识,根据题意得出对应点坐
21、标位置是解题关键.23、(1)作图见解析;(2)作图见解析.【解析】试题分析:(1)通过数格子可得到点P关于AC的对称点,再直接利用勾股定理可得到周长;(2)利用网格结合矩形的性质以及勾股定理可画出矩形.试题解析:(1)如图1所示:四边形AQCP即为所求,它的周长为:;(2)如图2所示:四边形ABCD即为所求考点:1轴对称;2勾股定理.24、(1)详见解析;(2)1+【解析】(1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.【详解】(1)证明:连结如图,与相切于点D,是的直径,即(2)解:在中, .【点睛】此题重点考查学生对圆的认识,熟
22、练掌握圆的性质是解题的关键.25、(1)证明见解析;(2)阴影部分的面积为【解析】(1)连接OC,先证明OAC=OCA,进而得到OCAE,于是得到OCCD,进而证明DE是O的切线;(2)分别求出OCD的面积和扇形OBC的面积,利用S阴影=SCODS扇形OBC即可得到答案【详解】解:(1)连接OC, OA=OC, OAC=OCA, AC平分BAE, OAC=CAE,OCA=CAE, OCAE, OCD=E, AEDE, E=90, OCD=90, OCCD,点C在圆O上,OC为圆O的半径, CD是圆O的切线;(2)在RtAED中, D=30,AE=6, AD=2AE=12, 在RtOCD中,D=
23、30,DO=2OC=DB+OB=DB+OC, DB=OB=OC=AD=4,DO=8,CD=SOCD=8, D=30,OCD=90,DOC=60, S扇形OBC=OC2=, S阴影=SCODS扇形OBC S阴影=8,阴影部分的面积为826、(1)12;(2)CH的长度是10cm【解析】(1)、过点A作于点N,过点M作于点Q,根据RtAMQ中的三角函数得出得出AN的长度;(2)、根据ANB和AGC相似得出DN的长度,然后求出BN的长度,最后求出GC的长度,从而得出答案【详解】解:(1)、过点A作于点N,过点M作于点Q. 在中,. ,.(2)、根据题意:. . ,. . . .答:的长度是10cm .点睛:本题考查了相似三角形的应用以及三角函数的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题27、29.8米【解析】作,根据题意确定出与的度数,利用锐角三角函数定义求出与的长度,由求出的长度,即可求出的长度【详解】解:如图,作,由题意得:米,米,则米,答:这架无人飞机的飞行高度为米【点睛】此题考查了解直角三角形的应用仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键