小学数学工程问题及答案.pdf

上传人:ylj18****41534 文档编号:72077310 上传时间:2023-02-08 格式:PDF 页数:9 大小:420.88KB
返回 下载 相关 举报
小学数学工程问题及答案.pdf_第1页
第1页 / 共9页
小学数学工程问题及答案.pdf_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《小学数学工程问题及答案.pdf》由会员分享,可在线阅读,更多相关《小学数学工程问题及答案.pdf(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、.工程问题工程问题工程问题基本数量关系式:(1)一般公式:工作效率工作时间工作总量工作总量工作效率工作时间工作总量 工作时间工作效率(2)用假设工作总量为“1”的方法解工程问题的公式:1工作时间=单位时间内完成工作总量的几分之几;一般给出工作时间,就可以知道工作效率为1,工作时间1单位时间能完成的几分之几=工作时间。如果可以给出工作效率是就可以知道工作时间为 a.1,a一、两个人的问题一、两个人的问题标题上说的“两个人”,也可以是两个组、两个队等等的两个集体.例例 1 1 一件工作,甲做 9 天可以完成,乙做 6 天可以完成.现在甲先做了 3 天,余下的工作由乙继续完成.乙需要做几天可以完成全

2、部工作?.例例 2 2 一件工作,甲、乙两人合作30 天可以完成,共同做了6 天后,甲离开了,由乙继续做了 40 天才完成.如果这件工作由甲或乙单独完成各需要多少天?.例例 3 3 某工程先由甲独做 63 天,再由乙单独做 28 天即可完成;如果由甲、乙两人合作,需48 天完成.现在甲先单独做 42 天,然后再由乙来单独完成,那么乙还需要做多少天?.-优选.例例 4 4 一件工程,甲队单独做 10 天完成,乙队单独做 30 天完成.现在两队合作,其间甲队休息了 2 天,乙队休息了 8 天(不存在两队同一天休息).问开始到完工共用了多少天时间?例例 5 5 一项工程,甲队单独做 20 天完成,乙

3、队单独做 30 天完成.现在他们两队一起做,其间甲队休息了 3 天,乙队休息了若干天.从开始到完成共用了 16 天.问乙队休息了多少天?例例 6 6 有甲、乙两项工作,X 单独完成甲工作要 10 天,单独完成乙工作要 15 天;李单独完成甲工作要 8 天,单独完成乙工作要 20 天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?.例例 7 7 一项工程,甲独做需10 天,乙独做需 15 天,如果两人合作,他要 8 天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天?例例 8 8 甲、乙合作一件工作,由于配合得好,甲的工作效率比单独做时快如果这件工作始终由甲一人单独来

4、做,需要多少小时?二、多人的工程问题二、多人的工程问题我们说的多人,至少有 3 个人,当然多人问题要比 2 人问题复杂一些,但是解题的基本思路还是差不多.例例 9 9 一件工作,甲、乙两人合作 36 天完成,乙、丙两人合作 45 天完成,甲、丙两人合作要 60 天完成.问甲一人独做需要多少天完成?例例 1010 一件工作,甲独做要 12 天,乙独做要 18 天,丙独做要 24 天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3 倍,再由丙接着做,丙做的天数是乙做的天数的 2 倍,终于做完了这件工作.问总共用了多少天?-优选.例例 1111 一项工程,甲、乙、丙三人合作需要

5、 13 天完成.如果丙休息 2 天,乙就要多做 4 天,或者由甲、乙两人合作 1 天.问这项工程由甲独做需要多少天?例例 1212 某项工作,甲组3 人 8 天能完成工作,乙组4 人 7 天也能完成工作.问甲组 2 人和乙组7 人合作多少时间能完成这项工作?例例 1313 制作一批零件,甲车间要 10 天完成,如果甲车间与乙车间一起做只要6 天就能完成.乙车间与丙车间一起做,需要 8 天才能完成.现在三个车间一起做,完成后发现甲车间比乙车间多制作零件 2400 个.问丙车间制作了多少个零件?.例例 1414 搬运一个仓库的货物,甲需要 10 小时,乙需要 12 小时,丙需要 15 小时.有同样

6、的仓库 A 和 B,甲在 A 仓库、乙在 B 仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?三、水管问题水管问题从数学的内容来看,水管问题与工程问题是一样的.水池的注水或排水相当于一项工程,注水量或排水量就是工作量.单位时间里的注水量或排水量就是工作效率.至于又有注入又有排出的问题,不过是工作量有加有减罢了.因此,水管问题与工程问题的解题思路基本相同.例例 1515 甲、乙两管同时打开,9 分钟能注满水池.现在,先打开甲管,10 分钟后打开乙管,经过 3 分钟就注满了水池.已知甲管比乙管每分钟多注入0.6 立方米水,这个水池的

7、容积是多少立方米?例例 1616 有一些水管,它们每分钟注水量都相等.现在打开其中若干根水管,经过预定的时间的1/3,再把打开的水管增加一倍,就能按预定时间注满水池,如果开始时就打开10 根水管,中途不增开水管,也能按预定时间注满水池.问开始时打开了几根水管?-优选.例例 1717 蓄水池有甲、丙两条进水管,和乙、丁两条排水管.要灌满一池水,单开甲管需 3 小时,单开丙管需要 5 小时.要排光一池水,单开乙管需要 4 小,丁管需要 6 小时,现在水池内有六分之一的水,如按甲、乙、丙、丁、甲、乙的顺序轮流打开 1 小时,问多少时间后水开始溢出水池?例例 1818 一个蓄水池,每分钟流入 4 立方

8、米水.如果打开 5 个水龙头,2 小时半就把水池水放空,如果打开 8 个水龙头,1 小时半就把水池水放空.现在打开 13 个水龙头,问要多少时间才能把水放空?例例 1919 一个水池,地下水从四壁渗入池中,每小时渗入水量是固定的.打开 A 管,8 小时可将满池水排空,打开 C 管,12 小时可将满池水排空.如果打开 A,B 两管,4 小时可将水排空.问打开 B,C 两管,要几小时才能将满池水排空?.例例 2020 有三片牧场,场上草长得一样密,而且长得一草;21 头牛 9 星期吃完第二片牧场的草.问多少头牛 18 星期才能吃完第三片牧场的草?“牛吃草”这一类型问题可以以各种各样的面目出现.限于

9、篇幅,我们只再举一个例子.例例 2121 画展 9 点开门,但早有人排队等候入场.从第一个观众来到时起,每分钟来的观众人数一样多.如果开 3 个入场口,9 点 9 分就不再有人排队,如果开5 个入场口,9 点 5 分就没有人排队.问第一个观众到达时间是8 点几分?例例 2222.一件工作,如果甲单独做,那么甲按规定时间可提前2 天完成,乙则要超过规定时间3 天才完成。现在甲乙二人合作二天后,剩下的乙单独做,刚好在规定日期内完成。若甲乙-优选.二人合作,完成工作需多长时间?例例 1 1 答:乙需要做 4 天可完成全部工作.解二:9 与 6 的最小公倍数是 18.设全部工作量是 18 份.甲每天完

10、成 2 份,乙每天完成 3份.乙完成余下工作所需时间是(18-2 3)3=4(天).解三:甲与乙的工作效率之比是6 9=2 3.甲做了 3 天,相当于乙做了 2 天.乙完成余下工作所需时间是6-2=4(天)例例 2 2 解:共做了 6 天后,原来,甲做 24 天,乙做 24 天,现在,甲做 0 天,乙做40=(24+16)天.这说明原来甲 24 天做的工作,可由乙做 16 天来代替.因此甲的工作效率如果乙独做,所需时间是如果甲独做,所需时间是答:甲或乙独做所需时间分别是 75 天和50 天例例 3 3 解:先对比如下:甲做 63 天,乙做 28 天;甲做 48 天,乙做 48 天.就知道甲少做

11、 63-48=15(天),乙要多做 48-28=20(天),由此得出甲的甲先单独做 42 天,比 63 天少做了 63-42=21(天),相当于乙要做因此,乙还要做 28+28=56(天).答:乙还需要做 56 天例例 4 4 解一:甲队单独做 8 天,乙队单独做 2 天,共完成工作量余下的工作量是两队共同合作的,需要的天数是 2+8+1=11(天).答:从开始到完工共用了11 天.解二:设全部工作量为30 份.甲每天完成 3 份,乙每天完成1 份.在甲队单独做 8 天,乙队单独做 2 天之后,还需两队合作(30-3 8-1 2)(3+1)=1(天).解三:甲队做 1 天相当于乙队做 3 天.

12、在甲队单独做 8 天后,还余下(甲队)10-8=2(天)工作量.相当于乙队要做 23=6(天).乙队单独做 2 天后,还余下(乙队)6-2=4(天)工作量.4=3+1,其中 3 天可由甲队 1 天完成,因此两队只需再合作1 天.例例 5 5 解一:如果 16 天两队都不休息,可以完成的工作量是由于两队休息期间未做的工作量是乙队休息期间未做的工作量是乙队休息的天数是答:乙队休息了5天半.解二:设全部工作量为60 份.甲每天完成 3 份,乙每天完成 2 份.两队休息期间未做的工作量是(3+2)16-60=20(份).因此乙休息天数是(20-3 3)2=5.5(天).解三:甲队做 2 天,相当于乙队

13、做 3 天.甲队休息 3 天,相当于乙队休息 4.5 天.如果甲队 16 天都不休息,只余下甲队 4 天工作量,相当于乙队 6 天工作量,乙休息天数是 16-6-4.5=5.5(天).例例 6 6 解:很明显,李做甲工作的工作效率高,X 做乙工作的工作效率高.因此让李先做甲,X先做乙.设乙的工作量为 60 份(15 与 20 的最小公倍数),X 每天完成 4 份,李每天完成 3 份.8 天,李就能完成甲工作.此时 X 还余下乙工作(60-48)份.由 X、李合作需要(60-48)(4+3)=4(天).8+4=12(天).答:这两项工作都完成最少需要12 天解:设这项工程的工作量为30 份,甲每

14、天完成 3份,乙每天完成 2 份.-优选.两人合作,共完成 3 0.8+2 0.9=4.2(份).因为两人合作天数要尽可能少,独做的应是工作效率较高的甲.因为要在 8 天内完成,所以两人合作的天数是(30-38)(4.2-3)=5(天).很明显,最后转化成“鸡兔同笼”型问题.解:乙 6 小时单独工作完成的工作量是乙每小时完成的工作量是两人合作 6 小时,甲完成的工作量是甲单独做时每小时完成的工作量甲单独做这件工作需要的时间是答:甲单独完成这件工作需要33 小时.这一节的多数例题都进行了“整数化”的处理.但是,“整数化”并不能使所有工程问题的计算简便.例 8 就是如此.例 8 也可以整数化,当求

15、出乙每有一点方便,但好处不大.不必多此一举.解:设这件工作的工作量是1.甲、乙、丙三人合作每天完成减去乙、丙两人每天完成的工作量,甲每天完成答:甲一人独做需要 90 天完成.例 9 也可以整数化,设全部工作量为180 份,甲、乙合作每天完成5 份,乙、丙合作每天完成 4 份,甲、丙合作每天完成3 份.请试一试,计算是否会方便些?解:甲做 1 天,乙就做 3 天,丙就做 32=6(天).说明甲做了 2 天,乙做了 23=6(天),丙做 26=12(天),三人一共做了 2+6+12=20(天).答:完成这项工作用了20 天.本题整数化会带来计算上的方便.12,18,24 这三数有一个易求出的最小公

16、倍数72.可设全部工作量为 72.甲每天完成 6,乙每天完成 4,丙每天完成 3.总共用了解:丙 2 天的工作量,相当乙 4 天的工作量.丙的工作效率是乙的工作效率的42=2(倍),甲、乙合作 1 天,与乙做 4 天一样.也就是甲做 1 天,相当于乙做 3 天,甲的工作效率是乙的工作效率的 3 倍.他们共同做 13 天的工作量,由甲单独完成,甲需要答:甲独做需要26 天.事实上,当我们算出甲、乙、丙三人工作效率之比是321,就知甲做 1 天,相当于乙、丙合作 1 天.三人合作需 13 天,其中乙、丙两人完成的工作量,可转化为甲再做 13 天来完成.解一:设这项工作的工作量是1.甲组每人每天能完

17、成乙组每人每天能完成甲组 2 人和乙组 7 人每天能完成答:合作 3 天能完成这项工作.解二:甲组3 人 8 天能完成,因此2 人 12 天能完成;乙组4 人 7 天能完成,因此7 人 4天能完成.现在已不需顾及人数,问题转化为:甲组独做 12 天,乙组独做 4 天,问合作几天完成?小学算术要充分利用给出数据的特殊性.解二是比例灵活运用的典型,如果你心算较好,很快就能得出答数.解一:仍设总工作量为 1.甲每天比乙多完成因此这批零件的总数是丙车间制作的零件数目是答:丙车间制作了 4200 个零件.解二:10 与 6 最小公倍数是 30.设制作零件全部工作量为 30 份.甲每天完成 3 份,甲、乙

18、一起每天完成 5 份,由此得出乙每天完成2 份.乙、丙一起,8 天完成.乙完成 82=16(份),丙完成 30-16=14(份),就知乙、丙-优选.工作效率之比是 1614=87.已知甲、乙工作效率之比是 32=128.综合一起,甲、乙、丙三人工作效率之比是1287.当三个车间一起做时,丙制作的零件个数是2400(12-8)7=4200(个)解:设搬运一个仓库的货物的工作量是 1.现在相当于三人共同完成工作量 2,所需时间是答:丙帮助甲搬运 3 小时,帮助乙搬运 5 小时.解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运

19、 6,乙每小时搬运 5,丙每小时搬运 4.三人共同搬完,需要60 2(6+5+4)=8(小时).甲需丙帮助搬运(60-6 8)4=3(小时).乙需丙帮助搬运(60-5 8)4=5(小时).解:甲每分钟注入水量是:(1-1/9 3)10=1/15乙每分钟注入水量是:1/9-1/15=2/45因此水池容积是:0.6(1/15-2/45)=27(立方米)答:水池容积是 27 立方米.分析:增开水管后,有原来2 倍的水管,注水时间是预定时间的1-1/3=2/3,2/3 是 1/3 的 2倍,因此增开水管后的这段时间的注水量,是前一段时间注水量的4 倍。设水池容量是 1,前后两段时间的注水量之比为:1:

20、4,那么预定时间的 1/3(即前一段时间)的注水量是 1/(1+4)=1/5。10 根水管同时打开,能按预定时间注满水,每根水管的注水量是1/10,预定时间的 1/3,每根水官的注水量是1/101/3=1/30要注满水池的 1/5,需要水管 1/51/30=6(根)解:前后两段时间的注水量之比为:1:(1-1/3)1/32=1:4前段时间注水量是:1(1+4)=1/5每根水管在预定 1/3 的时间注水量为:1101/3=1/30开始时打开水管根数:1/51/30=6(根)答:开始时打开 6 根水管。分析:,否则开甲管的过程中水池里的水就会溢出.以后(20 小时),池中的水已有此题与广为流传的“

21、青蛙爬井”是相仿的:一只掉进了枯井的青蛙,它要往上爬30 尺才能到达井口,每小时它总是爬3 尺,又滑下 2 尺.问这只青蛙需要多少小时才能爬到井口?看起来它每小时只往上爬3-2=1(尺),但爬了 27小时后,它再爬 1 小时,往上爬了 3 尺已到达井口.因此,答案是 28 小时,而不是 30 小时.解:先计算 1 个水龙头每分钟放出水量.2 小时半比 1 小时半多 60 分钟,多流入水 4 60=240(立方米).时间都用分钟作单位,1 个水龙头每分钟放水量是240 (5 150-8 90)=8(立方米),8 个水龙头 1 个半小时放出的水量是 8 8 90,其中 90 分钟内流入水量是 4

22、90,因此原来水池中存有水 8 8 90-4 90=5400(立方米).打开 13 个水龙头每分钟可以放出水813,除去每分钟流入4,其余将放出原存的水,放空原存的 5400,需要 5400(8 13-4)=54(分钟).答:打开 13 个龙头,放空水池要 54 分钟.水池中的水,有两部分,原存有水与新流入的水,就需要分开考虑,解本题的关键是先求出池中原存有的水.这在题目中却是隐含着的.解:设满水池的水量为 1.A 管每小时排出A 管 4 小时排出因此,B,C 两管齐开,每小时排水量是B,C 两管齐开,排光满水池的水,所需时间是答:B,C 两管齐开要 4 小时 48 分才将满池水-优选.排完.

23、本题也要分开考虑,水池原有水(满池)和渗入水量.由于不知具体数量,像工程问题不知工作量的具体数量一样.这里把两种水量分别设成“1”.但这两种量要避免混淆.事实上,也可以整数化,把原有水设为8 与 12 的最小公倍数 24.解:吃草总量=一头牛每星期吃草量牛头数星期数.根据这一计算公式,可以设定“一头牛每星期吃草量”作为草的计量单位.原有草+4 星期新长的草=124.原有草+9 星期新长的草=79.由此可得出,每星期新长的草是(79-124)(9-4)=3.那么原有草是 79-39=36(或者 124-34).对第三片牧场来说,原有草和18星期新长出草的总量是这些草能让907.218=36(头)

24、牛吃 18 个星期.答:36 头牛 18 个星期能吃完第三片牧场的草.例20与例19的解法稍有一点不一样.例20把“新长的”具体地求出来,把“原有的”与“新长的”两种量统一起来计算.事实上,如果例19 再有一个条件,例如:“打开B 管,10 小时可以将满池水排空.”也就可以求出“新长的”与“原有的”之间数量关系.但仅仅是例 19所求,是不需要加这一条件.好好想一想,你能明白其中的道理吗?解:设一个入场口每分钟能进入的观众为1 个计算单位.从 9 点至 9 点 9 分进入观众是 39,从 9 点至 9 点 5 分进入观众是 55.因为观众多来了 9-5=4(分钟),所以每分钟来的观众是(39-5

25、5)(9-5)=0.5.9 点前来的观众是 55-0.55=22.5.这些观众来到需要 22.50.5=45(分钟).答:第一个观众到达时间是8 点 15 分.挖一条水渠,甲、乙两队合挖要六天完成。甲队先挖三天,乙队接着挖一天,可挖这条水渠的 3/10,两队单独挖各需几天?分析:甲乙合作1 天后,甲又做了2 天共3/10-1/6=4/302(3/10-1/6)=24/30=15(天)1(1/6-1/15)=10(天)答:甲单独做要 15 天,乙单独做要 10 天.解设:规定时间为 X 天.(甲单独要 X-2 天,乙单独要 X+3 天,甲一共做了 2 天,乙一共做了 X 天)1/(X-2)2+X/(X+3)=1X=12规定要 12 天完成 11/(12-2)+1/(12+3)=1(1/6)=6 天答:两人合作完成要 6 天.例:一项工程,甲单独做 63 天,再由乙做 28 天完成,甲乙合作需要 48 天完成。甲先做 42 天,乙做还要几天?答:设甲的工效为x,乙的工效为 y63x+28y=148x+48y=1x=1/84y=1/112乙还要做(1-42/84)(1/112)=56(天)-优选.-优选

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁